Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (10): 751-758    DOI: 10.11901/1005.3093.2023.560
ARTICLES Current Issue | Archive | Adv Search |
Impact of Nitriding on Microstructure and Wave-absorbing Properties of SmFeN Alloy Powders
DONG Yuhang, LIU Chunzhong(), ZHANG Hongning, LU Tianni, LI Na, HUANG Zhenwei, MA Chiye
Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

DONG Yuhang, LIU Chunzhong, ZHANG Hongning, LU Tianni, LI Na, HUANG Zhenwei, MA Chiye. Impact of Nitriding on Microstructure and Wave-absorbing Properties of SmFeN Alloy Powders. Chinese Journal of Materials Research, 2024, 38(10): 751-758.

Download:  HTML  PDF(7010KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SmFeN has received a lot of attention in recent years because of its exceptional wave-absorbing characteristics. Herein, nitro-SmFeN alloy powders were prepared by gas nitriding at 550oC for 2 h and 3 h. Then the effect of nitriding treatment on their microstructure and electromagnetic parameters (including the dielectric real part ε′, the dielectric imaginary part ε″, the permeability real part μ′ and the permeability imaginary part μ″), attenuation constants, and impedance matching, as well as the influence on wave-absorbing properties were studied in detail. The findings indicate that the N content of SmFeN alloy powders can be increased due to the nitriding treatment, as a subsequence the the nitride structure of SmFeN is changed to Fe3N and Fe2N, therewith its wave absorbing performance is enhanced. Following nitriding, SmFeN's reflectivity value is significantly increased (with a minimum reflection loss value of -52.49 dB). Additionally, the effective absorption bandwidth is widened and moved to a lower frequency, with a maximum value of 4.3 GHz in the 10.4~14.7 GHz frequency range. The study's findings offer a useful concept for the ensuing relevant applications.

Key words:  metallic materials      SmFeN      nitriding      wave-absorbing properties      dielectric loss      impedance matching     
Received:  22 November 2023     
ZTFLH:  TB34  
Fund: Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2022-019);Applied Basic Research Program of Liaoning Province(2023JH2/101300235)
Corresponding Authors:  LIU Chunzhong, Tel: 18040038858, E-mail: czliu@sau.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.560     OR     https://www.cjmr.org/EN/Y2024/V38/I10/751

Element%, mass fraction
N2.5
Sm23
Fe73
Table 1  Chemical composition of SmFeN alloys
Sample numberNitriding duration
S00 h
S22 h
S33 h
Table 2  Description of sample number
Fig.1  XRD patterns of SmFeN powders with different nitriding time
No.Sm2Fe17N2.9Fe24N10Fe2NFe3N
S068.3%31.7%--
S245.3%-11.2%43.5%
S343.3%-41.2%15.6%
Table 3  Phase content of SmFeN with different nitriding durations (%, volume fraction)
Fig.2  SEM images of SmFeN with different nitriding durations (a) S0 sample scan, (b) S2 sample scan, (c) S3 sample scan
Fig.3  EDS spectra of SmFeN with different nitriding time (a) S0 sample scan, (b) S2 sample scan, (c) S3 sample scan
Fig.4  Electromagnetic parameter curves of SmFeN with different nitriding time (a) the frequency-dependent curve of the solid part of the dielectric, (b) the frequency-dependent curve of the imaginary part of the dielectric, (c) the frequency-dependent curve of the real part of the permeability, (d) the frequency-dependent curve of the imaginary part of the permeability
Fig.5  Dielectric and magnetic losses of SmFeN with different nitriding durations (a) curve of dielectric loss versus frequ-ency, (b) curve of magnetic loss versus frequency
Fig.6  Cole-Cole circles of SmFeN powders with different nitriding durations (a) S0 sample Cole-Cole circle, (b) S2 sample Cole-Cole circle, (c) S3 sample Cole-Cole circle
rbεsεεs-εFrequency band / GHz
1.556.468.014.913.1010.804~11.7035
S01.556.868.415.313.108.0155~10.3542
1.397.759.146.362.785.407~6.3065
S23.616.259.862.647.2216.29095~16.83065
S34.938.8813.813.959.8615.7512~16.6507
Table 5  Static dielectric coefficients and optical frequency dielectric coefficients of SmFeN powders with different nitriding durations calculated without Cole-Cole semicircle
Fig.7  C0 value curves of SmFeN powders with different nitriding durations
Fig.8  Decay constant a-value curves of SmFeN powders with different nitriding durations
Fig.9  Impedance matching plots of SmFeN powders with different nitriding durations (a) S0 sample impedance matching, (b) S2 sample impedance matching, (c) S3 sample impedance matching
Fig.10  3DRL plots for different nitriding durations (a) 3D plot of reflectance values of S0 sample, (b) 3D plot of reflectance values of S2 sample, (c) 3D plot of reflectance values of S3 sample
Sample numberd / mmFrequency / GHzRL / dB(< -10 GHz) Frequency band
S02.4410.6-1310.17~11.25
S21.717.82-23.0513.7~18
S34.645.67-52.495.4~8
2.412.1-45.8410.4~14.7
Table 6  Minimum reflectance and effective bandwidth range for different nitriding durations of pristine SmFeN
1 Liu S H, Liu J M, Dong X L, et al. Electromagnetic Wave Shielding aand Absorbing Materials [M]. Beijing: Chemical Industry Press, 2007
刘顺华, 刘军民, 董星龙 等. 电磁波屏蔽及吸收材料 [M]. 北京: 化学工业出版社, 2007
2 Li H S, Coey J M D. Chapter 1 Magnetic properties of Ternary Rare-earth Transition-metal Compounds [M]. Handbook of Magnetic Materials. Elsevier. 1991: 1
3 Ye J W, Liu Y, Zheng H X, et al. Structure refinement analysis of Sm2Fe(17)N x [J]. Rare Met. Mater. Eng., 2011, 40(6): 1015
叶金文, 刘 颖, 郑华雄 等. Sm2Fe(17)N x 的结构精修分析 [J]. 稀有金属材料与工程, 2011, 40(6): 1015
4 Ye J W, Liu Y, Wang D, et al. Nitriding behavior of Sm2Fe17 alloy studied by XRD [J]. Rare Met. Mater. Eng., 2006
叶金文, 刘 颖, 王 东 等. 用XRD研究Sm2Fe17合金氮化行为 [J]. 稀有金属材料与工程, 2006
5 Lu C, Hong X, Bao X, et al. Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compound., 2019, 784: 980
6 Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process [J]. J. Alloys Compound., 2017, 695: 1617
7 Zhou X, Wang B, Jia Z, et al. Dielectric behavior of Fe3N@C composites with green synthesis andtheir remarkable electromag‐netic wave absorption performance [J]. J. Colloid Interf. Sci., 2021, 582: 515
8 Lv H, Zhang H, Zhao J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures [J]. Nano Res., 2016, 9(6): 1813
9 Cheng Y, Cao J M, Li Y, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption [J]. ACS Sustainable Chem. Eng., 2018, 6: 1427
10 Wang H, Meng F, Huang F, et al. Interface modulating CNTs@ PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption [J]. ACS Appl. Mater. Interf., 2019, 11(12): 12142
11 Meena R S, Bhattachrya S, Chatterjee R. Complex permittivity, permeability and microwave absorbing properties of (Mn2- x Zn x )U-type hexaferrite [J]. J. Magnetism Magnetic Mater., 2010, 322(19): 2908
12 Li J, Dai B, Qi Y, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals [J]. J. Alloys Compound., 2021, 877160132
13 Luo J, Gao D. Synthesis and microwave absorption properties of PPy/Co nanocomposites [J]. J. Magnetism Magnetic Mater., 2014, 368: 82
14 Liu J L, Zhang P, Zhang X K, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method [J]. Rare Metal., 2017, 36(9): 704
[1] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[14] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[15] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
No Suggested Reading articles found!