|
|
Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method |
HUANG Wenzhan( ), CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu |
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
Cite this article:
HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method. Chinese Journal of Materials Research, 2024, 38(8): 605-613.
|
Abstract SiC / ZL102 Al-alloy composite foam was prepared via secondary foaming process in the temperature range of 660oC~700oC, by taking the prepared SiC/ZL102 Al-alloy composites with addition of appropriate foaming agent and various SiC amount as precursors. The influence of viscosity of melt composites on the stability of ZL102 Al-alloy foam was studied by revealing the relation between the SiC content with the density of precursor, the variation of porosity, pore number, average pore size and pore wall thickness of the prepared ZL102 Al-alloy foams at different temperatures. The acquired foams were characterized by means of EDS, SEM and super deep field microscope. The results show that with the increasing SiC content the density of the precursors is increased, whilst, the density, precursor with 6wt.%SiC is the highest. The suitable secondary foaming temperature is 680oC. With the increasing foaming temperature, the average pore size and pore wall thickness of low viscosity Al-alloy foam decrease, while the average pore size of high viscosity Al-alloy foam increases and the pore wall thickness decreases. The high viscosity Al-alloy foam has stable pore structure and higher porosity.
|
Received: 08 November 2023
|
|
Fund: Doctoral Startup Fund of Taiyuan Univesity of Science and Technology(20192066);Laijin Excellent Doctoral Fund(20202021);Scientific and Technological Innovation of Colleges and Universities in Shanxi Province(2020L0342) |
Corresponding Authors:
HUANG Wenzhan, Tel: 13889234335, E-mail: 2019063@tyust.edu.cn
|
1 |
Tan W, Yuan L, Can X Z, et al. Fabrication, properties, and applications of open-cell aluminum foams: A review [J]. J. Mater. Sci. Technol., 2021, 62: 11
doi: 10.1016/j.jmst.2020.05.039
|
2 |
Wang H, Zhu D, Hou S, et al. Cellular structure and energy absorption of Al Cu alloy foams fabricated via a two-step foaming method [J]. Mater. Des., 2020, 196: 109090
|
3 |
Zhang Y. Fluidity of aluminum foam melt and its effect on pore structure [D]. Nanjing: Southeast University., 2021
|
|
张 益. 泡沫铝熔体的流动性能及其对孔结构的影响 [D]. 南京: 东南大学, 2021
|
4 |
Marvi-Mashhadi M, Lopes C S, Llorca J. Surrogate models of the influence of the microstructure on the mechanical properties of closed- and open-cell foams [J]. J. Mater. Sci., 2018, 53: 12937
|
5 |
Islam M, Kader M, Hazell P, et al. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams [J]. Mater. Sci. Eng. A., 2016, 666: 245
|
6 |
Guang Z Y, Yan X L, Xu Z, et al. Preparation of complex shaped aluminum foam by a novel casting-foaming method [J]. Mater. Lett., 2021, 293: 129673
|
7 |
Hong X C, Liu Y Z, Huang B. Microstructure, properties and strengthening mechanism of TiC/ SiC synergistic reinforced aluminum matrix composites by selective laser melting [J]. Chin. J. Nonferrous Met., 2021, 31(9): 2436
|
|
洪旭潮, 刘允中, 黄 斌. 激光选区熔化成形TiC/SiC协同增强铝基复合材料的组织性能与强化机制 [J]. 中国有色金属学报, 2021, 31(9): 2436
|
8 |
Hui P L, Feng X W, Ge C D, et al. Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites [J]. J. Cent. South Univ., 2020, 27: 2567
|
9 |
Saravana K M, Begum S R, Pruncu C, et al. Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al-SiC composites [J]. J. Alloys Compd., 2021, 869: 159250
|
10 |
Xiu Z, Yang W, Dong R, et al. Microstructure and mechanical properties of 45vol.%SiCp/7075Al composite [J]. J. Mater. Sci. Technol., 2015, 31(9): 930
|
11 |
Shikang F, Insung H, Andrew L, et al. Investigating metal solidification with x-ray imaging [J]. Met., 2022, 12(3): 395
|
12 |
Lin H. Basic research on the preparation of steel-aluminum composite foam aluminum sandwich panels [D]. Shenyang: Northeastern University., 2018
|
|
林 皓. 钢铝复合泡沫铝夹芯板制备的基础研究 [D]. 沈阳: 东北大学, 2018
|
13 |
Liang X. Preparation and properties of silicon carbide mesh porous ceramics for porous media combustion [D]. Wuhan: Wuhan University of Science and Technology, 2017
|
|
梁 雄. 多孔介质燃烧用碳化硅网状多孔陶瓷的制备及性能研究 [D]. 武汉: 武汉科技大学, 2017
|
14 |
Imran M, Khan A A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8(3): 3347
doi: 10.1016/j.jmrt.2017.10.012
|
15 |
Miao Q, Zuo X Q, Zhou Y, et al. The pore structure, mechanical properties, sound absorption properties and mechanism of 304 stainless steel fiber/ZL104 aluminum alloy composite foam were studied [J]. Chin. J. Mater. Res., 2023, 37(3): 175
|
|
苗 琪, 左孝青, 周 芸 等. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理 [J]. 材料研究学报, 2023, 37(3): 175
|
16 |
Dong C G, Wang R C, Peng C Q, et al. Research progress of SiCp/Al composites [J]. Chin. J. Nonferrous Met., 2021, 31(11): 3161
|
|
董翠鸽, 王日初, 彭超群 等. SiCp/Al复合材料研究进展 [J]. 中国有色金属学报, 2021, 31(11): 3161
|
17 |
Zhu Z Q, Wang Q P, Min F F, et al. Research progress on interface control of SiCp/Al composites [J]. Mat. Guide., 2021, 35(13): 13139
|
|
朱志强, 王庆平, 闵凡飞 等. SiCp/Al复合材料界面调控研究进展 [J]. 材料导报, 2021, 35(13): 13139
|
18 |
Ma H Y, Zhang J S, An Y K. Research status of the stable forming mechanism of tackifier in aluminum foam [J]. Func. Mater., 2022, 53(6): 6040
|
|
马浩源, 张均闪, 安钰坤. 增粘剂在泡沫铝孔泡稳定成形机制研究现状 [J]. 功能材料, 2022, 53(6): 6040
doi: 10.3969/j.issn.1001-9731.2022.06.007
|
19 |
Xing L Y, Li Y F, Chen X B. The position and role of advanced composite materials in the development of aviation equipment [J]. J. Compos. Mater., 2022, 39(9): 4179
|
|
邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用 [J]. 复合材料学报, 2022, 39(9): 4179
|
20 |
Navya K, Prasanta J, Satish S, et al. Processing and characterization of Al-Si alloy/SiC foam interpenetrating phase composite [J]. Mat. Today: Proc., 2021, 44(P2): 2930
|
21 |
Xie D H, Pan R, Zhu S Z, et al. Effect of particle size on microstructure and mechanical properties of B4C/Al-Zn-Mg-Cu composites [J]. Chin. J. Mater. Res., 2023, 37(10): 731
|
|
谢东航, 潘 冉, 朱士泽 等. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响 [J]. 材料研究学报, 2023, 37(10): 731
doi: 10.11901/1005.3093.2022.574
|
22 |
Xu Y, Deng Y, Casari D, et al. In-situ X-radiographic study of nucleation and growth behaviour of primary silicon particles during solidification of a hypereutectic Al-Si alloy [J]. J. Alloys Compd., 2020, 832: 154948
|
23 |
Yu H, Dong Q, Chen Y, et al. Influence of silicon on growth mechanism of micro-arc oxidation coating on cast Al-Si alloy [J]. R. Soc. Open Sci., 2018, 5(7): 172428
|
24 |
Luksch J, Bleistein T, Koenig K, et al. Microstructural damage behaviour of Al foams [J]. Acta Mater., 2021(6): 116739
|
25 |
Wang F, Bian Y, Wang L, et al. Foaming behavior of microsized aluminum foam using hot rolling precursor [J]. Metals, 2023, 13(5): 928
|
26 |
Wang J K, Zhang Y Z, Li S S, et al. Preparation of 3C-SiC by carbothermal reduction of diatomite catalyzed by Fe and its mechanism [J]. Chin. J. Mater. Res., 2018, 32(10): 767
|
|
王军凯, 张远卓, 李赛赛 等. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理 [J]. 材料研究学报, 2018, 32(10): 767
doi: 10.11901/1005.3093.2017.533
|
27 |
Zhou C L. Preparation and properties of Ti3SiC2 ceramics and their reinforced Al matrix composites [D]. Guangzhou: South China University of Technology, 2017
|
|
周超兰. Ti3SiC2陶瓷及其增强Al基复合材料的制备与性能研究 [D]. 广州: 华南理工大学, 2017
|
28 |
Zhou X Y, Qin J, Liu X Q, et al. The relationship between cell wall thickness, porosity and average pore size of aluminum foam [J]. Mater. Rep., 2010, 24(4): 75
|
|
周向阳, 覃 静, 刘希泉 等. 泡沫铝孔壁厚度、孔隙率和平均孔径之间的关系 [J]. 材料导报, 2010, 24(4): 75
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|