Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 605-613    DOI: 10.11901/1005.3093.2023.543
ARTICLES Current Issue | Archive | Adv Search |
Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method
HUANG Wenzhan(), CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method. Chinese Journal of Materials Research, 2024, 38(8): 605-613.

Download:  HTML  PDF(20092KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiC / ZL102 Al-alloy composite foam was prepared via secondary foaming process in the temperature range of 660oC~700oC, by taking the prepared SiC/ZL102 Al-alloy composites with addition of appropriate foaming agent and various SiC amount as precursors. The influence of viscosity of melt composites on the stability of ZL102 Al-alloy foam was studied by revealing the relation between the SiC content with the density of precursor, the variation of porosity, pore number, average pore size and pore wall thickness of the prepared ZL102 Al-alloy foams at different temperatures. The acquired foams were characterized by means of EDS, SEM and super deep field microscope. The results show that with the increasing SiC content the density of the precursors is increased, whilst, the density, precursor with 6wt.%SiC is the highest. The suitable secondary foaming temperature is 680oC. With the increasing foaming temperature, the average pore size and pore wall thickness of low viscosity Al-alloy foam decrease, while the average pore size of high viscosity Al-alloy foam increases and the pore wall thickness decreases. The high viscosity Al-alloy foam has stable pore structure and higher porosity.

Key words:  composites      metal matrix      aluminum foam      secondary foaming      melt viscosity      SiC content     
Received:  08 November 2023     
ZTFLH:  TB331  
Fund: Doctoral Startup Fund of Taiyuan Univesity of Science and Technology(20192066);Laijin Excellent Doctoral Fund(20202021);Scientific and Technological Innovation of Colleges and Universities in Shanxi Province(2020L0342)
Corresponding Authors:  HUANG Wenzhan, Tel: 13889234335, E-mail: 2019063@tyust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.543     OR     https://www.cjmr.org/EN/Y2024/V38/I8/605

Fig.1  Precursor preparation process
Fig.2  Process of aluminum foam prepared by secondary foaming method
Fig.3  Effect of SiC content on the density of the precursor
Fig.4  Metallographic structure of aluminum foam precursor prepared at 680oC (a) 2%SiC; (b) 4%SiC; (c, d) 6%SiC; (e) 6%SiC SEM
Fig.5  Binary images of 1%~8%SiC foam aluminum prepared at 660oC~700oC
Fig.6  Porosity change of 1%~8%SiC aluminum foam prepared at 660oC~720oC
Fig.7  Microstructure of 1%~8%SiC aluminum foams prepared at 680oC (a, a1) 1%SiC; (b, b1) 2%SiC; (c, c1) 3%SiC; (d, d1)4%SiC; (e, e1) 6%SiC; (f, f1) 8%SiC
Fig.8  SEM and EDS of 6%SiC foam aluminum prepared at 680oC (a) SEM; (b) EDS
Fig.9  Change of pore number of 1%~8%SiC aluminum foam prepared at 660oC~720oC
Fig.10  Average pore size change of 1%~8%SiC aluminum foam prepared at 660oC~720oC
Fig.11  Change of pore wall thickness of 1%~8%SiC foam aluminum prepared at 660oC~720oC
1 Tan W, Yuan L, Can X Z, et al. Fabrication, properties, and applications of open-cell aluminum foams: A review [J]. J. Mater. Sci. Technol., 2021, 62: 11
doi: 10.1016/j.jmst.2020.05.039
2 Wang H, Zhu D, Hou S, et al. Cellular structure and energy absorption of Al Cu alloy foams fabricated via a two-step foaming method [J]. Mater. Des., 2020, 196: 109090
3 Zhang Y. Fluidity of aluminum foam melt and its effect on pore structure [D]. Nanjing: Southeast University., 2021
张 益. 泡沫铝熔体的流动性能及其对孔结构的影响 [D]. 南京: 东南大学, 2021
4 Marvi-Mashhadi M, Lopes C S, Llorca J. Surrogate models of the influence of the microstructure on the mechanical properties of closed- and open-cell foams [J]. J. Mater. Sci., 2018, 53: 12937
5 Islam M, Kader M, Hazell P, et al. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams [J]. Mater. Sci. Eng. A., 2016, 666: 245
6 Guang Z Y, Yan X L, Xu Z, et al. Preparation of complex shaped aluminum foam by a novel casting-foaming method [J]. Mater. Lett., 2021, 293: 129673
7 Hong X C, Liu Y Z, Huang B. Microstructure, properties and strengthening mechanism of TiC/ SiC synergistic reinforced aluminum matrix composites by selective laser melting [J]. Chin. J. Nonferrous Met., 2021, 31(9): 2436
洪旭潮, 刘允中, 黄 斌. 激光选区熔化成形TiC/SiC协同增强铝基复合材料的组织性能与强化机制 [J]. 中国有色金属学报, 2021, 31(9): 2436
8 Hui P L, Feng X W, Ge C D, et al. Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites [J]. J. Cent. South Univ., 2020, 27: 2567
9 Saravana K M, Begum S R, Pruncu C, et al. Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al-SiC composites [J]. J. Alloys Compd., 2021, 869: 159250
10 Xiu Z, Yang W, Dong R, et al. Microstructure and mechanical properties of 45vol.%SiCp/7075Al composite [J]. J. Mater. Sci. Technol., 2015, 31(9): 930
11 Shikang F, Insung H, Andrew L, et al. Investigating metal solidification with x-ray imaging [J]. Met., 2022, 12(3): 395
12 Lin H. Basic research on the preparation of steel-aluminum composite foam aluminum sandwich panels [D]. Shenyang: Northeastern University., 2018
林 皓. 钢铝复合泡沫铝夹芯板制备的基础研究 [D]. 沈阳: 东北大学, 2018
13 Liang X. Preparation and properties of silicon carbide mesh porous ceramics for porous media combustion [D]. Wuhan: Wuhan University of Science and Technology, 2017
梁 雄. 多孔介质燃烧用碳化硅网状多孔陶瓷的制备及性能研究 [D]. 武汉: 武汉科技大学, 2017
14 Imran M, Khan A A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8(3): 3347
doi: 10.1016/j.jmrt.2017.10.012
15 Miao Q, Zuo X Q, Zhou Y, et al. The pore structure, mechanical properties, sound absorption properties and mechanism of 304 stainless steel fiber/ZL104 aluminum alloy composite foam were studied [J]. Chin. J. Mater. Res., 2023, 37(3): 175
苗 琪, 左孝青, 周 芸 等. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理 [J]. 材料研究学报, 2023, 37(3): 175
16 Dong C G, Wang R C, Peng C Q, et al. Research progress of SiCp/Al composites [J]. Chin. J. Nonferrous Met., 2021, 31(11): 3161
董翠鸽, 王日初, 彭超群 等. SiCp/Al复合材料研究进展 [J]. 中国有色金属学报, 2021, 31(11): 3161
17 Zhu Z Q, Wang Q P, Min F F, et al. Research progress on interface control of SiCp/Al composites [J]. Mat. Guide., 2021, 35(13): 13139
朱志强, 王庆平, 闵凡飞 等. SiCp/Al复合材料界面调控研究进展 [J]. 材料导报, 2021, 35(13): 13139
18 Ma H Y, Zhang J S, An Y K. Research status of the stable forming mechanism of tackifier in aluminum foam [J]. Func. Mater., 2022, 53(6): 6040
马浩源, 张均闪, 安钰坤. 增粘剂在泡沫铝孔泡稳定成形机制研究现状 [J]. 功能材料, 2022, 53(6): 6040
doi: 10.3969/j.issn.1001-9731.2022.06.007
19 Xing L Y, Li Y F, Chen X B. The position and role of advanced composite materials in the development of aviation equipment [J]. J. Compos. Mater., 2022, 39(9): 4179
邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用 [J]. 复合材料学报, 2022, 39(9): 4179
20 Navya K, Prasanta J, Satish S, et al. Processing and characterization of Al-Si alloy/SiC foam interpenetrating phase composite [J]. Mat. Today: Proc., 2021, 44(P2): 2930
21 Xie D H, Pan R, Zhu S Z, et al. Effect of particle size on microstructure and mechanical properties of B4C/Al-Zn-Mg-Cu composites [J]. Chin. J. Mater. Res., 2023, 37(10): 731
谢东航, 潘 冉, 朱士泽 等. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响 [J]. 材料研究学报, 2023, 37(10): 731
doi: 10.11901/1005.3093.2022.574
22 Xu Y, Deng Y, Casari D, et al. In-situ X-radiographic study of nucleation and growth behaviour of primary silicon particles during solidification of a hypereutectic Al-Si alloy [J]. J. Alloys Compd., 2020, 832: 154948
23 Yu H, Dong Q, Chen Y, et al. Influence of silicon on growth mechanism of micro-arc oxidation coating on cast Al-Si alloy [J]. R. Soc. Open Sci., 2018, 5(7): 172428
24 Luksch J, Bleistein T, Koenig K, et al. Microstructural damage behaviour of Al foams [J]. Acta Mater., 2021(6): 116739
25 Wang F, Bian Y, Wang L, et al. Foaming behavior of microsized aluminum foam using hot rolling precursor [J]. Metals, 2023, 13(5): 928
26 Wang J K, Zhang Y Z, Li S S, et al. Preparation of 3C-SiC by carbothermal reduction of diatomite catalyzed by Fe and its mechanism [J]. Chin. J. Mater. Res., 2018, 32(10): 767
王军凯, 张远卓, 李赛赛 等. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理 [J]. 材料研究学报, 2018, 32(10): 767
doi: 10.11901/1005.3093.2017.533
27 Zhou C L. Preparation and properties of Ti3SiC2 ceramics and their reinforced Al matrix composites [D]. Guangzhou: South China University of Technology, 2017
周超兰. Ti3SiC2陶瓷及其增强Al基复合材料的制备与性能研究 [D]. 广州: 华南理工大学, 2017
28 Zhou X Y, Qin J, Liu X Q, et al. The relationship between cell wall thickness, porosity and average pore size of aluminum foam [J]. Mater. Rep., 2010, 24(4): 75
周向阳, 覃 静, 刘希泉 等. 泡沫铝孔壁厚度、孔隙率和平均孔径之间的关系 [J]. 材料导报, 2010, 24(4): 75
[1] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[2] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[3] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[10] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[11] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[12] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[13] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[14] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[15] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
No Suggested Reading articles found!