Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 585-592    DOI: 10.11901/1005.3093.2024.033
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane
ZHOU Jian1,2(), XIA Mengyue1,2, ZHANG Hangfei1,2, LIU Qiaojun1,2
1.College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China
Cite this article: 

ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane. Chinese Journal of Materials Research, 2024, 38(8): 585-592.

Download:  HTML  PDF(21205KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cation exchange membrane was prepared by co-deposition of Dopamine (DA) and Polyethyleneimine (PEI) based on mussel bionic binders, and its properties were characterized by infrared spectrometer, scanning electron microscope, and UV visible spectrophotometer. The effect of DA to PEI concentration ratio on the performance of the modified membrane was studied. The results showed that with the increase of PEI concentration, the selective permeability and membrane resistance increased first and then decreased, while the oxidation percentage of the modified membrane decreased first and then increased. When the concentration ratio of DA to PEI was 1:1, the modified membrane had lower oxidation percentage and membrane resistance. Accordingly, the water content and ion exchange capacity were 48.68% and 2.49 mmol/g, respectively, and the selective permeability was up to 97.8%, that is 8.08% superior to the original membrane.

Key words:  organic polymer materials      ion exchange membrane      co-deposition      high selective permeability     
Received:  11 January 2024     
ZTFLH:  TQ028  
Fund: National Natural Science Foundation of China(52364055);Gansu Provincial Department of Education: Major Cultivation Project of University Scientific Research Innovation Platform(2024CXPT-14);Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University
Corresponding Authors:  ZHOU Jian, Tel: (0931)4956083, E-mail: zhoujian@mail.lzjtu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.033     OR     https://www.cjmr.org/EN/Y2024/V38/I8/585

Membrane typeThickness / mmMoisture content / %Ion exchange capacity / mol·kg-1Selective permeability / %Membrane resistance / Ω·cm2
IONSEP-MC-C0.42< 40> 2.4> 92< 10
Table 1  Performance parameters of commercial cation exchange membranes
Fig.1  Equivalent diagram of the test device
Fig.2  UV-Vis spectra of DA under different conditions
Fig.3  UV-Vis spectra of solutions with different concentration ratios of DA and PEI
Fig.4  Schematic diagram of DA-PEI co-deposition reaction
Fig.5  Influence of different concentration ratios of DA and PEI on water content and ion exchange capacity
Fig.6  Effects of different concentration ratios of DA and PEI on migration number and selective permeability
Fig.7  Effects of different concentration ratios of DA and PEI on oxidation resistance and membrane resistance
Fig.8  SEM images of original membrane and modified membrane with different concentration ratio (a) M0, (b) M1, (c) M2, (d) M3, (e) M4 and (f) M5
CON
M095.04.80
M194.75.00.2
M293.76.00.3
M392.96.40.6
M490.77.40.8
M594.35.40.3
Table 2  Content of elements on the surface of the original membrane and the modified membrane (mass fraction, %)
Fig.9  EDS elemental surface scans of the original and modified membranes (a) M0, (b) M1, (c) M2, (d) M3, (e) M4 and (f) M5
Fig.10  Original membrane and the modified membranes with different concentration ratios of DA and PEI
1 Dong S. Preparation of NASICON-structured NaTi2(PO4)3 material and device assembly and reduction/recovery of trace reducible metal ions in water [D]. Jinan: Shandong University, 2021
董 顺. NASICON型NaTi2(PO4)3材料的制备、器件组装及其对水体中微量可还原金属离子的还原回收 [D]. 济南: 山东大学, 2021
2 Campione A, Cipollina A, Bogle I D L, et al. A hierarchical model for novel schemes of electrodialysis desalination [J]. Desalination, 2019, 465: 79
doi: 10.1016/j.desal.2019.04.020
3 Zhou J, Wang S F, Song X S. Electrodeposition of cobalt in double-membrane three-compartment electrolytic reactor [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(6): 1706
4 Zhou J, Wang S F, Song X S, et al. Ion transport for electrodeposition of cobalt in double-membrane three-compartment electrolytic cell [J]. Chin. J. Nonferrous Met., 2016, 26(11): 2426
周 键, 王三反, 宋小三 等. 双膜三室电解槽中电沉积钴的离子传输 [J]. 中国有色金属学报, 2016, 26(11): 2426
5 Rana D, Matsuura T. Surface modifications for antifouling membranes [J]. Chem. Rev., 2010, 110(4): 2448
doi: 10.1021/cr800208y pmid: 20095575
6 Bao L R, Xu Z G, Guo W, et al. Enhancement of lithium extraction from low grade brines by highly hydrophilic blend membranes using MnO2 ion sieve as adsorbents [J]. Colloids Surf., 2023, 674A: 131884
7 Mu Y X, Wang S F, Wang T, et al. Progress in the modification of ion-exchange membranes [J]. Membr. Sci. Technol., 2013, 33(6): 119
穆永信, 王三反, 王 挺 等. 离子交换膜改性的研究进展 [J]. 膜科学与技术, 2013, 33(6): 119
8 Li J, Xu Y Q, Ruan H M, et al. Monovalent cation selective membranes: state and development perspective [J]. Membr. Sci. Tech., 2015, 35(3): 113
李 健, 徐燕青, 阮慧敏 等. 单价选择性阳离子交换膜的研究进展 [J]. 膜科学与技术, 2015, 35(3): 113
9 Khoiruddin, Ariono D, Subagjo, et al. Surface modification of ion-exchange membranes: methods, characteristics, and performan-ce [J]. J. Appl. Polym. Sci., 2017, 134(48): 45540
10 Li B, Liu W P, Jiang Z Y, et al. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine) [J]. Langmuir, 2009, 25(13): 7368
doi: 10.1021/la900262p pmid: 19366196
11 Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426
doi: 10.1126/science.1147241 pmid: 17947576
12 Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution [J]. Langmuir, 2011, 27(6): 2819
doi: 10.1021/la104981s pmid: 21332218
13 Guo B B, Zhu C Y, Xu Z K. Surface and interface engineering for advanced nanofiltration membranes [J]. Chin. J. Polym. Sci., 2022, 40(2): 124
14 Zhao W R, Zhang W, Liu Y, et al. Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication [J]. Sep. Purif. Technol., 2022, 300: 121802
15 Wang Z, Zhang W J, Wen S, et al. Rapid co-deposition of dopamine and polyethyleneimine triggered by CuSO4/H2O2 oxidation to fabricate nanofiltration membranes with high selectivity and antifouling ability [J]. Sep. Purif. Technol., 2023, 305: 122409
16 Wei Q, Zhang F L, Li J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings [J]. Polym. Chem., 2010, 1(9): 1430
17 Du X, Li L X, Li J S, et al. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning [J]. Adv. Mater., 2014, 26(47): 8029
18 Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation [J]. J. Mater. Chem., 2014, 2A(26) : 10225
19 Wang J, Zhu J Y, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine [J]. J. Mater. Chem., 2017, 5A(28) : 14847
20 Cao R Q, Duan F, Xu Y, et al. Composite modification of anion exchange membrane by in-situ layer-by-layer assembly to improve antifouling performance [J]. J. Membr. Sci., 2024, 690: 122211
21 Chen R Y, Chen Z, Zheng X, et al. Preparation and characterization of CoPc(COOH)8-SA/mCS bipolar membranes [J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2438
陈日耀, 陈 震, 郑 曦 等. CoPc(COOH)8-SA/mCS双极膜的制备及表征 [J]. 物理化学学报, 2009, 25(12): 2438
22 Galama A H, Hoog N A, Yntema D R. Method for determining ion exchange membrane resistance for electrodialysis systems [J]. Desalination, 2016, 380: 1
23 Zhang X M. Preparation, characterization and application of cation exchange membranes based sulfonated PVDF [D]. Lanzhou: Lanzhou Jiaotong University, 2019
张学敏. PVDF磺化阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2019
24 Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2- induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability [J]. Angew. Chem. Int. Ed., 2016, 55(9): 3054
doi: 10.1002/anie.201510724 pmid: 26822393
25 Zhao W R, Liu Y, Zhang W, et al. Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication [J]. Chem. Ind. Eng. Prog., 2022, 42(3): 1508
赵王瑞, 刘 燕, 张 伟 等. Fe3+诱导聚多巴胺-聚乙烯亚胺电沉积制备单价选择性膜 [J]. 化工进展, 2022, 42(3): 1508
26 Wang Z, Xie Y J, Li Y W, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry [J]. Chem. Mater., 2017, 29(19): 8195
27 Charkoudian L K, Franz K J. Fe(III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid [J]. Inorg. Chem., 2006, 45(9): 3657
pmid: 16634598
28 Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition [J]. J. Membr. Sci., 2013, 431: 113
29 Chen Z H. Study on the modification and properties of polyethylene anion exchange membrane [D]. Lanzhou: Lanzhou Jiaotong University, 2021
陈志华. 聚乙烯阴离子交换膜的改性及性能研究 [D]. 兰州: 兰州交通大学, 2021
30 Ball V, Gracio J, Vila M, et al. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants [J]. Langmuir, 2013, 29(41): 12754
31 Li Y H. Preparation, characterization and application of organic-inorganic hybrid SiO2 cation exchange membranes [D]. Lanzhou: Lanzhou Jiaotong University, 2020
李艳红. 有机-无机杂化SiO2阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2020
32 Jiang J H, Zhu L P, Zhu L J, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films [J]. Langmuir, 2011, 27(23): 14180
doi: 10.1021/la202877k pmid: 22011109
33 Zhang N, Jiang B, Zhang L H, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation [J]. Chem. Eng. J., 2019, 359: 1442
doi: 10.1016/j.cej.2018.11.033
34 Ma Z. Study on intelligent modification of membrane surface based on membrane cleaning response [D]. Tianjin: Tianjin Polytechnic University, 2018
马 忠. 基于膜清洗响应的膜表面智能改性研究 [D]. 天津: 天津工业大学, 2018
35 He A, Zhang C, Lv Y, et al. Mussel-inspired coatings directed and accelerated by an electric field [J]. Macromol. Rapid Commun., 2016, 37(17): 1460
36 Mao C C, Wang X, Zhang W, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance [J]. Colloids Surf., 2021, 614A: 126136
37 Almeida L C, Frade T, Correia R D, et al. Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces [J]. Sci. Rep., 2021, 11(1): 2237
doi: 10.1038/s41598-021-81816-1 pmid: 33500469
38 Lv Y, Yang H C, Liang H Q, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking [J]. J. Membr. Sci., 2015, 476: 50
[1] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[2] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[3] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
No Suggested Reading articles found!