|
|
Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane |
ZHOU Jian1,2( ), XIA Mengyue1,2, ZHANG Hangfei1,2, LIU Qiaojun1,2 |
1.College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2.Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China |
|
Cite this article:
ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane. Chinese Journal of Materials Research, 2024, 38(8): 585-592.
|
Abstract The cation exchange membrane was prepared by co-deposition of Dopamine (DA) and Polyethyleneimine (PEI) based on mussel bionic binders, and its properties were characterized by infrared spectrometer, scanning electron microscope, and UV visible spectrophotometer. The effect of DA to PEI concentration ratio on the performance of the modified membrane was studied. The results showed that with the increase of PEI concentration, the selective permeability and membrane resistance increased first and then decreased, while the oxidation percentage of the modified membrane decreased first and then increased. When the concentration ratio of DA to PEI was 1:1, the modified membrane had lower oxidation percentage and membrane resistance. Accordingly, the water content and ion exchange capacity were 48.68% and 2.49 mmol/g, respectively, and the selective permeability was up to 97.8%, that is 8.08% superior to the original membrane.
|
Received: 11 January 2024
|
|
Fund: National Natural Science Foundation of China(52364055);Gansu Provincial Department of Education: Major Cultivation Project of University Scientific Research Innovation Platform(2024CXPT-14);Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University |
Corresponding Authors:
ZHOU Jian, Tel: (0931)4956083, E-mail: zhoujian@mail.lzjtu.cn
|
1 |
Dong S. Preparation of NASICON-structured NaTi2(PO4)3 material and device assembly and reduction/recovery of trace reducible metal ions in water [D]. Jinan: Shandong University, 2021
|
|
董 顺. NASICON型NaTi2(PO4)3材料的制备、器件组装及其对水体中微量可还原金属离子的还原回收 [D]. 济南: 山东大学, 2021
|
2 |
Campione A, Cipollina A, Bogle I D L, et al. A hierarchical model for novel schemes of electrodialysis desalination [J]. Desalination, 2019, 465: 79
doi: 10.1016/j.desal.2019.04.020
|
3 |
Zhou J, Wang S F, Song X S. Electrodeposition of cobalt in double-membrane three-compartment electrolytic reactor [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(6): 1706
|
4 |
Zhou J, Wang S F, Song X S, et al. Ion transport for electrodeposition of cobalt in double-membrane three-compartment electrolytic cell [J]. Chin. J. Nonferrous Met., 2016, 26(11): 2426
|
|
周 键, 王三反, 宋小三 等. 双膜三室电解槽中电沉积钴的离子传输 [J]. 中国有色金属学报, 2016, 26(11): 2426
|
5 |
Rana D, Matsuura T. Surface modifications for antifouling membranes [J]. Chem. Rev., 2010, 110(4): 2448
doi: 10.1021/cr800208y
pmid: 20095575
|
6 |
Bao L R, Xu Z G, Guo W, et al. Enhancement of lithium extraction from low grade brines by highly hydrophilic blend membranes using MnO2 ion sieve as adsorbents [J]. Colloids Surf., 2023, 674A: 131884
|
7 |
Mu Y X, Wang S F, Wang T, et al. Progress in the modification of ion-exchange membranes [J]. Membr. Sci. Technol., 2013, 33(6): 119
|
|
穆永信, 王三反, 王 挺 等. 离子交换膜改性的研究进展 [J]. 膜科学与技术, 2013, 33(6): 119
|
8 |
Li J, Xu Y Q, Ruan H M, et al. Monovalent cation selective membranes: state and development perspective [J]. Membr. Sci. Tech., 2015, 35(3): 113
|
|
李 健, 徐燕青, 阮慧敏 等. 单价选择性阳离子交换膜的研究进展 [J]. 膜科学与技术, 2015, 35(3): 113
|
9 |
Khoiruddin, Ariono D, Subagjo, et al. Surface modification of ion-exchange membranes: methods, characteristics, and performan-ce [J]. J. Appl. Polym. Sci., 2017, 134(48): 45540
|
10 |
Li B, Liu W P, Jiang Z Y, et al. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine) [J]. Langmuir, 2009, 25(13): 7368
doi: 10.1021/la900262p
pmid: 19366196
|
11 |
Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426
doi: 10.1126/science.1147241
pmid: 17947576
|
12 |
Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution [J]. Langmuir, 2011, 27(6): 2819
doi: 10.1021/la104981s
pmid: 21332218
|
13 |
Guo B B, Zhu C Y, Xu Z K. Surface and interface engineering for advanced nanofiltration membranes [J]. Chin. J. Polym. Sci., 2022, 40(2): 124
|
14 |
Zhao W R, Zhang W, Liu Y, et al. Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication [J]. Sep. Purif. Technol., 2022, 300: 121802
|
15 |
Wang Z, Zhang W J, Wen S, et al. Rapid co-deposition of dopamine and polyethyleneimine triggered by CuSO4/H2O2 oxidation to fabricate nanofiltration membranes with high selectivity and antifouling ability [J]. Sep. Purif. Technol., 2023, 305: 122409
|
16 |
Wei Q, Zhang F L, Li J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings [J]. Polym. Chem., 2010, 1(9): 1430
|
17 |
Du X, Li L X, Li J S, et al. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning [J]. Adv. Mater., 2014, 26(47): 8029
|
18 |
Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation [J]. J. Mater. Chem., 2014, 2A(26) : 10225
|
19 |
Wang J, Zhu J Y, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine [J]. J. Mater. Chem., 2017, 5A(28) : 14847
|
20 |
Cao R Q, Duan F, Xu Y, et al. Composite modification of anion exchange membrane by in-situ layer-by-layer assembly to improve antifouling performance [J]. J. Membr. Sci., 2024, 690: 122211
|
21 |
Chen R Y, Chen Z, Zheng X, et al. Preparation and characterization of CoPc(COOH)8-SA/mCS bipolar membranes [J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2438
|
|
陈日耀, 陈 震, 郑 曦 等. CoPc(COOH)8-SA/mCS双极膜的制备及表征 [J]. 物理化学学报, 2009, 25(12): 2438
|
22 |
Galama A H, Hoog N A, Yntema D R. Method for determining ion exchange membrane resistance for electrodialysis systems [J]. Desalination, 2016, 380: 1
|
23 |
Zhang X M. Preparation, characterization and application of cation exchange membranes based sulfonated PVDF [D]. Lanzhou: Lanzhou Jiaotong University, 2019
|
|
张学敏. PVDF磺化阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2019
|
24 |
Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2- induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability [J]. Angew. Chem. Int. Ed., 2016, 55(9): 3054
doi: 10.1002/anie.201510724
pmid: 26822393
|
25 |
Zhao W R, Liu Y, Zhang W, et al. Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication [J]. Chem. Ind. Eng. Prog., 2022, 42(3): 1508
|
|
赵王瑞, 刘 燕, 张 伟 等. Fe3+诱导聚多巴胺-聚乙烯亚胺电沉积制备单价选择性膜 [J]. 化工进展, 2022, 42(3): 1508
|
26 |
Wang Z, Xie Y J, Li Y W, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry [J]. Chem. Mater., 2017, 29(19): 8195
|
27 |
Charkoudian L K, Franz K J. Fe(III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid [J]. Inorg. Chem., 2006, 45(9): 3657
pmid: 16634598
|
28 |
Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition [J]. J. Membr. Sci., 2013, 431: 113
|
29 |
Chen Z H. Study on the modification and properties of polyethylene anion exchange membrane [D]. Lanzhou: Lanzhou Jiaotong University, 2021
|
|
陈志华. 聚乙烯阴离子交换膜的改性及性能研究 [D]. 兰州: 兰州交通大学, 2021
|
30 |
Ball V, Gracio J, Vila M, et al. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants [J]. Langmuir, 2013, 29(41): 12754
|
31 |
Li Y H. Preparation, characterization and application of organic-inorganic hybrid SiO2 cation exchange membranes [D]. Lanzhou: Lanzhou Jiaotong University, 2020
|
|
李艳红. 有机-无机杂化SiO2阳离子交换膜的制备、表征与应用研究 [D]. 兰州: 兰州交通大学, 2020
|
32 |
Jiang J H, Zhu L P, Zhu L J, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films [J]. Langmuir, 2011, 27(23): 14180
doi: 10.1021/la202877k
pmid: 22011109
|
33 |
Zhang N, Jiang B, Zhang L H, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation [J]. Chem. Eng. J., 2019, 359: 1442
doi: 10.1016/j.cej.2018.11.033
|
34 |
Ma Z. Study on intelligent modification of membrane surface based on membrane cleaning response [D]. Tianjin: Tianjin Polytechnic University, 2018
|
|
马 忠. 基于膜清洗响应的膜表面智能改性研究 [D]. 天津: 天津工业大学, 2018
|
35 |
He A, Zhang C, Lv Y, et al. Mussel-inspired coatings directed and accelerated by an electric field [J]. Macromol. Rapid Commun., 2016, 37(17): 1460
|
36 |
Mao C C, Wang X, Zhang W, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance [J]. Colloids Surf., 2021, 614A: 126136
|
37 |
Almeida L C, Frade T, Correia R D, et al. Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces [J]. Sci. Rep., 2021, 11(1): 2237
doi: 10.1038/s41598-021-81816-1
pmid: 33500469
|
38 |
Lv Y, Yang H C, Liang H Q, et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking [J]. J. Membr. Sci., 2015, 476: 50
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|