Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (10): 791-800    DOI: 10.11901/1005.3093.2023.488
ARTICLES Current Issue | Archive | Adv Search |
Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2
REN Xuechang, YANG Zhenyu(), FENG Hao, AN Ju, CAO Pengfei, FU Ning
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Cite this article: 

REN Xuechang, YANG Zhenyu, FENG Hao, AN Ju, CAO Pengfei, FU Ning. Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2. Chinese Journal of Materials Research, 2024, 38(10): 791-800.

Download:  HTML  PDF(18600KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transitional metal dichalcogenides (TMDs) materials have attracted great interest as a potential multifunctional material. However, the synthesis method of 1T-WS2 is limited and complex. In this paper, 1T/2H phase WS2 nanomaterials were prepared by a simple solvothermal method. For the first time, the content of 1T phase in WS2 could be adjusted by controlling the ratio of WCl6/TAA in the precursor and the reaction temperature. The effect of reaction conditions on the content of 1T phase in the product was confirmed by XRD, XPS and SEM, while the co-catalytic degradation test result confirmed that W-200 (W-12) had the best co-catalytic effect. Finally, TEM and Raman spectroscopy confirmed that W-200 had the best content of the 1T phase. By comparing the state of the material before and after the reaction, it is proved that sulfur vacancies will be generated during the use of WS2 and it has excellent recyclability.

Key words:  metallic materials      transition metal sulfides      1T/2H-WS2      sulfur vacancies     
Received:  07 October 2023     
ZTFLH:  TB31  
Fund: the Young Scholars Science Foundation of Lanzhou Jiaotong University(2022044);Education Science and Technology Innovation Project of Gansu Province(2023CXZX-562)
Corresponding Authors:  YANG Zhenyu, Tel: 17693109113, E-mail: 657501365@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.488     OR     https://www.cjmr.org/EN/Y2024/V38/I10/791

Fig.1  WS2 XRD patterns under different WCl6/TAA preparation conditions
Fig.2  SEM images of WS2 under different WCl6/TAA ratios (a) 1:6, (b) 1:9, (c) 1:12, (d) 1:15
Fig.3  XPS spectra of WS2 under different conditions XPS spectra of W (a) and XPS spectra of S (b)
Fig.4  Co-catalytic degradation performance (a) andreaction rate constant of WS2 for phenol (b) under different WCl6/TAA ratios
Fig.5  XRD patterns of WS2 prepared at different temperatures
Fig.6  SEM images of WS2 at different temperatures (a) 160oC, (b) 180oC, (c) 200oC, (d~f) 220oC
Fig.7  XPS spectra of WS2 at the same temperature (a) XPS spectra of W, (b) XPS spectra of S
Fig.8  Co-catalytic degradation performance (a) and reaction rate constant (b) of WS2 for phenol under different temperatures
Fig.9  EDS image of W-200
Fig.10  High resolution projection image of W-200 (a, b) and its lattice spacing (c)
Fig.11  Raman spectra of W-200
Fig.12  SEM images of W-200 before (a) and after (b) reaction
Fig.13  XRD patterns (a), Raman spectra (b) and XPS (c, d) of W-200 before and after reaction
1 Chen Y D, Shao Y, Li O Y, et al. WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation [J]. Chem. Eng. J., 2022, 442: 135961
2 Li G F, Ren Z Q, Wang Y, et al. Molecular spectroscopy and docking simulation revealed the binding mechanism of phenol onto anammox sludge extracellular polymeric substances [J]. Sci. Total. Environ., 2022, 830: 154733
3 Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future [J]. Prog. Mater. Sci., 2011, 56(8): 1178
4 Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides [J]. Small, 2017, 13(35): 1700098
5 Gutiérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers [J]. Nano Lett., 2013, 13(8): 3447
doi: 10.1021/nl3026357 pmid: 23194096
6 Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications [J]. Mater. Today, 2017, 20(3): 116
7 Manthiram A. An outlook on lithium ion battery technology [J]. ACS Cent. Sci., 2017, 3(10): 1063
8 Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials [J]. Chem. Rev., 2013, 113(5): 3766
doi: 10.1021/cr300263a pmid: 23286380
9 Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J]. Nature, 2015, 520(7549): 656
10 Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites [J]. Chem. Soc. Rev., 2015, 44(9): 2713
doi: 10.1039/c4cs00182f pmid: 25292209
11 Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
12 Raza F, Yim D, Park J H, et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light [J]. J. Am. Chem. Soc., 2017, 139(41): 14767
13 Liu Z Q, Nie K K, Qu X Y, et al. General bottom-Up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T'-phase purity [J]. J. Am. Chem. Soc., 2022, 144(11): 4863
doi: 10.1021/jacs.1c12379 pmid: 35258958
14 Li Y J, Ding L, Yin S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as Co-catalysts [J]. Nano-Micro Lett., 2020, 12(1): 6
15 Loh T A J, Chua D H C. Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition [J]. J. Phys. Chem., 2015, 119C(49) : 27496
16 Leong S X, Mayorga-Martinez C C, Chia X, et al. 2H→1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties [J]. ACS Appl. Mater. Interfaces, 2017, 9(31): 26350
17 Yi J J, She X J, Song Y H, et al. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2018, 335: 282
18 Piao M X, Yang Z N, Liu F, et al. Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber [J]. J. Alloys Compd., 2020, 815: 152335
19 Khan A, Khan I, Khan M Y, et al. Facile synthesis of 1T-WS2/graphite nanocomposite for efficient solar-driven oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2020, 45(45): 24045
20 Zhou K, Ke P L, Wang A Y, et al. Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique [J]. Chin. J. Mater. Res., 2014, 28(3): 161
doi: 10.11901/1005.3093.2013.797
周 凯, 柯培玲, 汪爱英 等. PECVD制备掺氮类金刚石薄膜的电化学特性 [J]. 材料研究学报, 2014, 28(3): 161
21 Yao Y, Jin Z W, Chen Y H, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution react-ion [J]. Carbon, 2018, 129: 228
22 Ding W, Hu L, Dai J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields [J]. ACS Nano, 2019, 13(2): 1694
doi: 10.1021/acsnano.8b07744 pmid: 30649862
23 Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey [J]. 2D Mater., 2019, 6(4): 045036
24 Loo A H, Bonanni A, Sofer Z, et al. Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation [J]. Electrochem. Commun., 2015, 50: 39
25 Shi Y M, Li H N, Li L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques [J]. Chem. Soc. Rev., 2015, 44(9): 2744
26 Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
27 Mayorga-Martinez C C, Ambrosi A, Eng A Y S, et al. Metallic 1T-WS2 for selective impedimetric vapor sensing [J]. Adv. Funct. Mater., 2015, 25(35): 5611
28 Mahler B, Hoepfner V, Liao K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution [J]. J. Am. Chem. Soc., 2014, 136(40): 14121
29 Liu Q, Li X L, Xiao Z R, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties [J]. Adv. Mater., 2015, 27(33): 4837
30 Yang Z, Ren X, Ding S, et al. Modulation of morphology and phase of magnetically separable 1T-WS2/CuFe2O4 heterojunctions for acceleration of peroxymonosulfate decomposition for rapid degradation of phenol [J]. Separation and Purification Technology, 2024, 11(348): 127635
31 Paudel D R, Pan U N, Singh T I, et al. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting [J]. Appl. Catal., 2021, 286B: 119897
32 Yang C Y, Gong N, Chen T, et al. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosh-eets for Li-S batteries [J]. Green Energy Environ., 2022, 7(6): 1340
33 Ren X, Yang Z, Pang X, et al. The preparation and characterization of WS2 nanomaterials with different morphologies and the mechanistic study of peroxymonosulfate activation for phenol degradation [J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 114082
34 Yao Y, Dong W B, Zhao Z, et al. Vertically aligned 1T-WS2 nanosheets supported on carbon cloth as a high-performance flexible photocatalyst [J]. Colloids Surf., 2022, 649A: 129533
35 Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application [J]. Nanotechnology, 2018, 29(2): 025705
36 Woods J M, Jung Y, Xie Y J, et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films [J]. ACS Nano, 2016, 10(2): 2004
doi: 10.1021/acsnano.5b06126 pmid: 26836122
37 Tong X, Qi Y H, Chen J, et al. Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2 [J]. ChemNanoMat, 2017, 3(7): 466
38 Bi F K, Zhang X D, Chen J F, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation [J]. Appl. Catal., 2020, 269B: 118767
39 Koçak Y, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis [J]. J. Phys.: Conf. Ser., 2016, 707: 012028
40 Ma C, Feng S, Zhou J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue [J]. Appl. Catal., 2019, 259B: 118015
41 Zhu Q, Chen W Z, Cheng H, et al. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies [J]. ChemCatChem, 2019, 11(11): 2667
[1] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[6] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[11] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[12] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[13] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
No Suggested Reading articles found!