|
|
Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2 |
REN Xuechang, YANG Zhenyu( ), FENG Hao, AN Ju, CAO Pengfei, FU Ning |
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
Cite this article:
REN Xuechang, YANG Zhenyu, FENG Hao, AN Ju, CAO Pengfei, FU Ning. Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2. Chinese Journal of Materials Research, 2024, 38(10): 791-800.
|
Abstract Transitional metal dichalcogenides (TMDs) materials have attracted great interest as a potential multifunctional material. However, the synthesis method of 1T-WS2 is limited and complex. In this paper, 1T/2H phase WS2 nanomaterials were prepared by a simple solvothermal method. For the first time, the content of 1T phase in WS2 could be adjusted by controlling the ratio of WCl6/TAA in the precursor and the reaction temperature. The effect of reaction conditions on the content of 1T phase in the product was confirmed by XRD, XPS and SEM, while the co-catalytic degradation test result confirmed that W-200 (W-12) had the best co-catalytic effect. Finally, TEM and Raman spectroscopy confirmed that W-200 had the best content of the 1T phase. By comparing the state of the material before and after the reaction, it is proved that sulfur vacancies will be generated during the use of WS2 and it has excellent recyclability.
|
Received: 07 October 2023
|
|
Fund: the Young Scholars Science Foundation of Lanzhou Jiaotong University(2022044);Education Science and Technology Innovation Project of Gansu Province(2023CXZX-562) |
Corresponding Authors:
YANG Zhenyu, Tel: 17693109113, E-mail: 657501365@qq.com
|
1 |
Chen Y D, Shao Y, Li O Y, et al. WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation [J]. Chem. Eng. J., 2022, 442: 135961
|
2 |
Li G F, Ren Z Q, Wang Y, et al. Molecular spectroscopy and docking simulation revealed the binding mechanism of phenol onto anammox sludge extracellular polymeric substances [J]. Sci. Total. Environ., 2022, 830: 154733
|
3 |
Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future [J]. Prog. Mater. Sci., 2011, 56(8): 1178
|
4 |
Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides [J]. Small, 2017, 13(35): 1700098
|
5 |
Gutiérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers [J]. Nano Lett., 2013, 13(8): 3447
doi: 10.1021/nl3026357
pmid: 23194096
|
6 |
Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications [J]. Mater. Today, 2017, 20(3): 116
|
7 |
Manthiram A. An outlook on lithium ion battery technology [J]. ACS Cent. Sci., 2017, 3(10): 1063
|
8 |
Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials [J]. Chem. Rev., 2013, 113(5): 3766
doi: 10.1021/cr300263a
pmid: 23286380
|
9 |
Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J]. Nature, 2015, 520(7549): 656
|
10 |
Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites [J]. Chem. Soc. Rev., 2015, 44(9): 2713
doi: 10.1039/c4cs00182f
pmid: 25292209
|
11 |
Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
|
|
谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
|
12 |
Raza F, Yim D, Park J H, et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light [J]. J. Am. Chem. Soc., 2017, 139(41): 14767
|
13 |
Liu Z Q, Nie K K, Qu X Y, et al. General bottom-Up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T'-phase purity [J]. J. Am. Chem. Soc., 2022, 144(11): 4863
doi: 10.1021/jacs.1c12379
pmid: 35258958
|
14 |
Li Y J, Ding L, Yin S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as Co-catalysts [J]. Nano-Micro Lett., 2020, 12(1): 6
|
15 |
Loh T A J, Chua D H C. Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition [J]. J. Phys. Chem., 2015, 119C(49) : 27496
|
16 |
Leong S X, Mayorga-Martinez C C, Chia X, et al. 2H→1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties [J]. ACS Appl. Mater. Interfaces, 2017, 9(31): 26350
|
17 |
Yi J J, She X J, Song Y H, et al. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2018, 335: 282
|
18 |
Piao M X, Yang Z N, Liu F, et al. Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber [J]. J. Alloys Compd., 2020, 815: 152335
|
19 |
Khan A, Khan I, Khan M Y, et al. Facile synthesis of 1T-WS2/graphite nanocomposite for efficient solar-driven oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2020, 45(45): 24045
|
20 |
Zhou K, Ke P L, Wang A Y, et al. Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique [J]. Chin. J. Mater. Res., 2014, 28(3): 161
doi: 10.11901/1005.3093.2013.797
|
|
周 凯, 柯培玲, 汪爱英 等. PECVD制备掺氮类金刚石薄膜的电化学特性 [J]. 材料研究学报, 2014, 28(3): 161
|
21 |
Yao Y, Jin Z W, Chen Y H, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution react-ion [J]. Carbon, 2018, 129: 228
|
22 |
Ding W, Hu L, Dai J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields [J]. ACS Nano, 2019, 13(2): 1694
doi: 10.1021/acsnano.8b07744
pmid: 30649862
|
23 |
Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey [J]. 2D Mater., 2019, 6(4): 045036
|
24 |
Loo A H, Bonanni A, Sofer Z, et al. Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation [J]. Electrochem. Commun., 2015, 50: 39
|
25 |
Shi Y M, Li H N, Li L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques [J]. Chem. Soc. Rev., 2015, 44(9): 2744
|
26 |
Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
|
27 |
Mayorga-Martinez C C, Ambrosi A, Eng A Y S, et al. Metallic 1T-WS2 for selective impedimetric vapor sensing [J]. Adv. Funct. Mater., 2015, 25(35): 5611
|
28 |
Mahler B, Hoepfner V, Liao K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution [J]. J. Am. Chem. Soc., 2014, 136(40): 14121
|
29 |
Liu Q, Li X L, Xiao Z R, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties [J]. Adv. Mater., 2015, 27(33): 4837
|
30 |
Yang Z, Ren X, Ding S, et al. Modulation of morphology and phase of magnetically separable 1T-WS2/CuFe2O4 heterojunctions for acceleration of peroxymonosulfate decomposition for rapid degradation of phenol [J]. Separation and Purification Technology, 2024, 11(348): 127635
|
31 |
Paudel D R, Pan U N, Singh T I, et al. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting [J]. Appl. Catal., 2021, 286B: 119897
|
32 |
Yang C Y, Gong N, Chen T, et al. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosh-eets for Li-S batteries [J]. Green Energy Environ., 2022, 7(6): 1340
|
33 |
Ren X, Yang Z, Pang X, et al. The preparation and characterization of WS2 nanomaterials with different morphologies and the mechanistic study of peroxymonosulfate activation for phenol degradation [J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 114082
|
34 |
Yao Y, Dong W B, Zhao Z, et al. Vertically aligned 1T-WS2 nanosheets supported on carbon cloth as a high-performance flexible photocatalyst [J]. Colloids Surf., 2022, 649A: 129533
|
35 |
Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application [J]. Nanotechnology, 2018, 29(2): 025705
|
36 |
Woods J M, Jung Y, Xie Y J, et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films [J]. ACS Nano, 2016, 10(2): 2004
doi: 10.1021/acsnano.5b06126
pmid: 26836122
|
37 |
Tong X, Qi Y H, Chen J, et al. Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2 [J]. ChemNanoMat, 2017, 3(7): 466
|
38 |
Bi F K, Zhang X D, Chen J F, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation [J]. Appl. Catal., 2020, 269B: 118767
|
39 |
Koçak Y, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis [J]. J. Phys.: Conf. Ser., 2016, 707: 012028
|
40 |
Ma C, Feng S, Zhou J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue [J]. Appl. Catal., 2019, 259B: 118015
|
41 |
Zhu Q, Chen W Z, Cheng H, et al. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies [J]. ChemCatChem, 2019, 11(11): 2667
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|