Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 90-98    DOI: 10.11901/1005.3093.2021.568
ARTICLES Current Issue | Archive | Adv Search |
Crystallization and Thermal Shock Behaviors of SiO2-Al2O3-ZnO-CaO-based Glass with Added Different Contents of CeO2 at 900
FENG Min1, LIAO Yimin1, CHEN Minghui1(), ZHU Shenglong2, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

FENG Min, LIAO Yimin, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Crystallization and Thermal Shock Behaviors of SiO2-Al2O3-ZnO-CaO-based Glass with Added Different Contents of CeO2 at 900℃. Chinese Journal of Materials Research, 2022, 36(2): 90-98.

Download:  HTML  PDF(17254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiO2-Al2O3-ZnO-CaO enamels were prepared by adding 10%~20% (mass fraction, %) CeO2 particles with a diameter of 20~50 nm into SiO2-Al2O3-ZnO-CaO-ZrO2-TiO2 enamels, and the crystal evolution behavior and phase evolution at 900℃ were investigated by scanning electron microscopy (SEM)/ energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that: The addition of 20% CeO2 particles can inhibit the precipitation of needle-like ZrSiO4 and feather CaTiSiO5 crystals, With the increase of CeO2 particle addition level, this hindering effect is enhanced. CeO2 combines with ZrO2 in enamel to form solid solution can promote the precipitation of primary crystal CaZrTi2O7, while CaZrTi2O7 hardly transforms into ZrSiO4 with the extension of sintering time. Meanwhile, the consumption of Ca and Ti also inhibited the precipitation of CaTiSiO5 crystals during the formation of CaZrTi2O7 crystals. These results show that the addition of 20% CeO2 can make the enamel system maintain high stability and excellent thermal shock resistance at 900℃, and thus prolong the service life of the enamel.

Key words:  inorganic non-metallic materials      enamel      additional CeO2      crystallization      phase transformation      thermal shock     
Received:  30 September 2021     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(51871051)
About author:  CHEN Minghui, Tel: (024)23904856, E-mail: mhchen@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.568     OR     https://www.cjmr.org/EN/Y2022/V36/I2/90

SiO2Al2O3ZnOCaOZrO2TiO2B2O3Na2OKNO3
58.265.989.003.665.292.754.663.407.00
Table 1  Nominal compositionof glass frit (mass fraction,%)
Fig.1  XRD patterns of E10C annealed at 900℃ for different time
Fig.2  Back-scattered electron micrographs of E10C annealed at 900℃ for different time (a) 1 h, (b) 4 h, (c) 6 h and (d) 10 h
Fig.3  XRD patterns of E15C annealed at 900℃for different time
Fig.4  Back-scattered electron micrographs of E15C annealed at 900℃ for different time (a) 1 h, (b) 4 h, (c) 6 h and (d) 10 h
Fig.5  XRD patterns of E20C annealed at 900℃for different time
Fig.6  Back-scattered electron micrographs of E20C annealed at 900℃ for different time (a) 1 h, (b) 4 h, (c) 6 h and (d) 10 h
Fig.7  TEM microstructure and elemental mapping of E20C annealed at 900℃ for 0.5 h
Fig.8  Mass change of specimens with E10C, E15C, and E20C enamel coatings after thermal shock at 900℃ for different cycles
Fig.9  Surface (a) and cross-sectional (b) microstructures of as fired E20C enamel coating
Fig.10  Cross-sectional microstructures of E10 C (a), E15C (b) and E20C (c) enamel coatings after thermal shock for 30 cyc at 900℃ (Inset in Fig.10b shows the local enlarged image)
1 Goward G W . Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 73: 108
2 Sivaqumar R , Mordike B L . High temperature coatings for gas turbine blades: A review [J]. Surf. Coat. Technol., 1989, 37(2): 139
3 Jiang C Y , Yang Y F , Zhang Z Y , et al . Preparation and enhanced hot corrosion resistance of a Zr-doped PtAl2+(Ni, Pt)Al dual-phase coating [J]. Acta. Metall. Sin., 2018,54: 581
蒋成洋, 阳颖飞, 张正义 等 . 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究 [J]. 金属学报, 2018, 54: 581
4 Teixeira V . Residual stress and cracking in thin PVD coatings [J]. Vacuum, 2002, 64(3): 393
5 Kingery W D . Factors affecting thermal stress resistance of ceramic materials [J]. J. Am. Ceram. Soc., 1955, 38(1): 3
6 Guo H B , Cui Y J , Peng H , et al . Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf- containing superalloy [J]. Corros. Sci., 2010, 52: 1440
7 García Ferré F , Oemellese M , Di Fonzo F , et al . Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: a preliminary study [J]. Corros. Sci., 2013, 77: 375
8 Malecka J . Effect of an Al2O3 coating on the oxidation process of a γ-TiAl phase based alloy [J]. Corros. Sci., 2012, 63: 287
9 Donald I W , Metcalfe B L , Wood D J , et al . The preparation and properties of some lithium zinc silicate glass-ceramics [J]. J. Mater. Sci., 1989, 24(11): 3892
10 Donald I W . Preparation, properties and chemistry of glass-and glass-ceramic-to-metal seals and coatings [J]. J. Mater. Sci., 1993, 28(11): 2841
11 Donald I W , Metcalfe B L , Gerrard L A . Interfacial reactions in glass-ceramic-to-metal seals [J]. J. Am. Ceram. Soc., 2008, 91(3): 715
12 Bengisu M , Brow R K , White J E . Interfacial reactions between lithium silicate glass-ceramics and Ni-based superalloys and the effect of heat treatment at elevated temperatures [J]. J. Mater. Sci., 2004, 39(2): 605
13 Arvind A , Kumar R , Deo M N , et al . Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass-ceramics [J]. Ceram. Int., 2009, 35(4): 1661
14 Datta S , Das S S . A new high temperature resistant glass-ceramic coating for gas turbine engine components [J]. B. Mater. Sci., 2005, 28(7): 689
15 Das S , Datta S , Basu D , et al . Glass-ceramics as oxidation resistant bond coat in thermal barrier coating system [J]. Ceram. Int., 2009, 35(4): 1403
16 Das S , Mukhopadhyay A K , Datta S , et al . Hard glass-ceramic coating by microwave processing [J]. J. Eur. Ceram. Soc., 2008, 28(4): 729
17 Das S , Datta S , Basu D , et al . Hot corrosion of glass coating on nickel base superalloy [J]. Ceram. Int., 2008, 34(5): 1215
18 Sarkar S , Datta S , Das S , et al . Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings [J]. Surf. Coat. Technol., 2009, 203(13): 1797
19 Das S , Datta S , Basu D , et al . Thermal cyclic behavior of glass-ceramic bonded thermal barrier coating on nimonic alloy substrate [J]. Ceram. Int., 2009, 35(6): 2123
20 Chen M , Li W , Shen M , et al . Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
21 Li W , Zhu S , Wang C , et al . SiO2-Al2O3-glass composite coating on Ti-6Al-4V alloy: Oxidation and interfacial reaction behavior [J]. Corros. Sci., 2013, 74: 367
22 Tang Z , Wang F , Wu W . Effect of Al2O3 and enamel coatings on 900℃ oxidation and hot corrosion behaviors of gamma-TiAl [J]. Mat. Sci. and Eng. A., 2000, 276(1): 70
23 Shen M , Zhu S , Chen M , et al . The oxidation and oxygen permeation resistance of quartz particle-reinforced aluminosilicate glass coating on titanium alloy [J]. J. Am. Ceram. Soc., 2011, 94(8): 2436
24 Chen M , Shen M , Zhu S , et al . Preparation and thermal shock behavior at 1000℃ of a glass-alumina-NiCrAlY tri-composite coating on K38G superalloy [J]. Surf. Coat. Technol., 2012, 206(8): 2566
25 Shen M , Zhu S , Wang F . Cyclic oxidation behavior of glass-ceramic composite coatings on superalloy K38G at 1100℃ [J]. Thin Solid Films, 2011, 519(15): 4884
26 Feng M , Chen M H , Yu Z D , et al . Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings [J]. Acta. Metall. Sin., 2017, 53(12): 1636
丰 敏, 陈明辉, 余中狄 等 . 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究 [J]. 金属学报, 2017, 53(12): 1636
27 Liao Y M , Feng M , Chen M H , et al . Comparative study of hot corrosion behavior of the enamel based composite coatings and the arc ion plating NiCrAlY on TiAl alloy [J]. Acta. Metall. Sin., 2019, 55(2): 229
廖依敏, 丰 敏, 陈明辉 等 . TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究 [J]. 金属学报, 2019, 55(2): 229
28 Chen M , Zhu S , Wang F . Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K [J]. J. Am. Ceram. Soc., 2010, 93(10): 3230
29 Wang X , Chen M , Zhu S , et al . Phase evolution of SiO2-Al2O3-ZnO-CaO-ZrO2-TiO2-Based glass with added Y-PSZ particles [J]. J. Am. Ceram. Soc., 2013, 96(5): 1456
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[5] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[7] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[9] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[12] YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. 材料研究学报, 2023, 37(3): 211-218.
[13] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
No Suggested Reading articles found!