Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 81-89    DOI: 10.11901/1005.3093.2020.493
ARTICLES Current Issue | Archive | Adv Search |
Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel
YUAN Qiangqiang, WANG Zhigang(), JIANG Yongfang, ZHANG Yinghui(), HUANG Ankang, YE Jieyun
Department of Materials Metallurgy Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel. Chinese Journal of Materials Research, 2022, 36(2): 81-89.

Download:  HTML  PDF(18683KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of warm rolling temperature on deformation microstructure and texture of C-Cr-Ti-B low carbon steel were analyzed by means of scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and internal friction measurement. The results show that the microstructure after warm rolling was composed of deformed ferrite and a few of pearlite, while the ferrite content in-grain shear band increased first and then decreased with the increase of warm rolling temperature, which reaches the maximum when warm rolling at 450℃. The information of shear bands is closely related to the segregation of Ti and B elements. {001}<110> and {223}<110> textures are the main components at 350℃ and 550℃ respectively, and the shear band formed during rolling at 450℃ favors the formation of the γ-fiber texture obviously. The rolling temperature had little effect on the intensity of the {001}<110> but more effect on the γ-fiber, and the {111}<112> component was the stable texture. The results of dislocation density and internal friction test indirectly indicate that the strong interaction between solid solution C atom and dislocation is the reason to inhibit the formation of shear band at low temperature, whereas, the dynamic recovery leads to weak γ-fiber texture at high temperature.

Key words:  metallic materials      micro-alloyed low carbon steel      warm rolling      deformation texture      in-grain shear bands      solute carbon atoms     
Received:  19 November 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(5170040846);the Key Research and Development Program of Jiangxi Province(909171403002)
About author:  ZHANG Yinghui, Tel: 13979764105, E-mail: jxustzyh@163.com
WANG Zhigang, Tel: (0797)8312422, E-mail: wzgang2008cn@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.493     OR     https://www.cjmr.org/EN/Y2022/V36/I2/81

ElementCMnCrTiAlBNFe
Content0.0370.190.480.0150.01240×10-624×10-6Bal.
Table 1  Chemical composition of Cr-Ti-B low carbon steel (mass fraction, %)
Fig.1  Microstructure of Cr-Ti-B LC steel rolled at 250℃ (a), 350℃ (b), 450℃ (c), 550℃ (d), 650℃ (e) and relationship between content of shear band and rolling temperature (f)
Fig.2  SEM microstructure of Cr-Ti-B LC steel rolled at 450℃ (a) shear bands; (b) pearlite phase
Fig.3  Constant φ2=45° ODF sections obtained at the center of sample after rolling temperature at 350℃ (a), 450℃ (b) and 550℃ (c)
Fig.4  Variation in the orientation density along the α and γ orientation lines of steel plates after warm rolling different temperature (a) α orientation line; (b) γ orientation line
Fig.5  State of dislocation rolled at 350℃ and 550℃ (a) pile-up; (b) dislocation cell
Fig.6  Element content and distribution in deformation band (a) and shear band (b)
Fig.7  Grain orientation distribution and geometrically necessary dislocation density change after warm rolling at different rolling temperature (a, d) 350℃; (b, e) 450℃; (c, f) 550℃
Fig.8  Relationship between hardness and rolling temperature of warm rolled plate
Fig.9  Internal friction curves of hot rolling plate (a) and warm rolling plate after rolling at 250℃ (b), 350℃(c), 450℃ (d), 550℃ (e) and 650℃ (f)
Fig.10  Relationship between M7C3 and M23C6 precipitate and warm rolling temperature
Rolling temperature/℃SnoekBf / Hz

Activation energy (H)

/kJ·mol-1

Tm/℃QmTm/℃Qm
250504.96×10-41164.10×10-43.776.05
350321.26×10-31363.44×10-42.5372.65
450321.11×10-41201.84×10-42.3472.85
550511.09×10-41268.55×10-52.4677.40
650--1121.99×10-43.18-
Table 2  Internal friction of low carbon steel after rolling at different temperature
1 Wang Z D , Guo Y H , Sun D Q , et al . Texture evolution of a IF steel during ferritic rolling and direct annealing [J]. Chin. J. Mater. Res., 2006, 20: 399
王昭东, 郭艳辉, 孙大庆 等 . IF钢铁素体区热轧和退火过程中织构的演变 [J]. 材料研究学报, 2006, 20: 399
2 Xu R C , Qi X L . A summary of theory and application of ferrite rolling technology [J]. Laigang Sci. Technol., 2010, (5): 1
许荣昌, 亓显玲 . 铁素体轧制技术理论与应用综述 [J]. 莱钢科技, 2010, (5): 1
3 He J G , Zhao A M , Huang Y , et al . Effect of warm rolling process on phase transformation, microstructure and mechanical properties of Nano-Bainite steel [J]. Chin. J. Mater. Res., 2015, 29: 207
何建国, 赵爱民, 黄 耀 等 . 温轧工艺对纳米贝氏体相变速率、组织和力学性能的影响 [J]. 材料研究学报, 2015, 29: 207
4 Wang Z D , Guo Y H , Tian Y , et al . Effect of ferritic hot rolling schedule on texture and deep drawability of Ti-IF steel [J]. J. Northeast Univ. (Nat. Sci.), 2006, 27: 1347
王昭东, 郭艳辉, 田 勇 等 . 铁素体区轧制工艺对IF钢织构及深冲性能的影响 [J]. 东北大学学报(自然科学版), 2006, 27: 1347
5 Wang Z G , Liu X , Yuan Q Q , et al . Warm deformation and dynamic strain aging of a Nb-Cr microalloyed low-carbon steel [J]. Metall. Mater. Trans., 2020, 51A: 4623
6 Dillamore I L , Roberts J G , Bush A C . Occurrence of shear bands in heavily rolled cubic metals [J]. Met. Sci., 1979, 13: 73
7 Humphreys A O , Liu D , Toroghinejad M R , et al . Warm rolling behaviour of low carbon steels [J]. Mater. Sci. Technol., 2003, 19: 709
8 Quadir M Z , Duggan B J . Shear band thickening during rolling of interstitial free steel [J]. ISIJ Int., 2006, 46: 1495
9 Toroghinejad M R , Humphreys A O , Ashrafizadeh F , et al . Effect of rolling temperature on the recrystallization texture of warm rolled steels [J]. Mater. Sci. Forum, 2003, 426-432: 3691
10 Timokhina I B , Nosenkov A I , Humphreys A O , et al . Effect of alloying elements on the microstructure and texture of warm rolled steels [J]. ISIJ Int., 2004, 44: 717
11 Barnett M R , Jonas J J . Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels [J]. ISIJ Int., 1997, 37: 697
12 Nave M D , Barnett M R , Beladi H . The influence of solute carbon in cold-rolled steels on shear band formation and recrystallization texture [J]. ISIJ Int., 2004, 44: 1072
13 Wang Y , Liu W L , Cao X H , et al . Effect of different rolling technological process on the solution of carbon in MR T-2.5 tinplate [J]. J. Shenyang Ligong Univ., 2010, 29(4): 55
王 玉, 刘炜丽, 曹晓晖 等 . 轧制工艺对MR T-2.5镀锡基板C原子固溶的影响 [J]. 沈阳理工大学学报, 2010, 29(4): 55
14 Shen K , Duggan B J . Formation of shear band in cold rolled boby-centered cubic metal [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2005, 37: 571
沈 凯, Duggan B J . 冷轧体心立方IF钢中剪切带的形成 [J]. 南京航空航天大学学报, 2005, 37: 571
15 Cai D Y , Dong H F , Liao B , et al . Dynamic strain ageing behavior of micro-alloyed low carbon steel [J]. Trans. Mater. Heat Treat., 2008, 37(5): 86
蔡大勇, 董海锋, 廖 波 等 . 微合金化低碳钢的动态应变时效行为 [J]. 材料热处理学报, 2008, 37(5): 86
16 Gao H J , Huang Y , Nix W D , et al . Mechanism-based strain gradient plasticity-I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
17 Zhou Z C , Yang H , Gu S Y , et al . Application of internal friction technique in investigating atomic defects of metallic crystalline [J]. J. Suzhou Vocat.Univ., 2010, 21(2): 1
周正存, 杨 洪, 顾苏怡 等 . 内耗技术在金属晶体原子缺陷方面的应用研究 [J]. 苏州市职业大学学报, 2010, 21(2): 1
18 Bagramov R , Mari D , Benoit W . Internal friction in a martensitic high-carbon steel [J]. Philos. Mag., 2001, 81A: 2797
19 Wert C , Marx J . A new method for determining the heat of activation for relaxation processes [J]. Acta Metall., 1953, 1: 113
20 Hu Y H . The formation mechanism of texture {111} in low carbon deep drawing steel [J]. Angang Technol., 1990, (2): 1
胡玉和 . 关于低碳深冲钢板中{111}织构的形成机制问题(一) [J]. 鞍钢技术, 1990, (2): 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!