Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 281-290    DOI: 10.11901/1005.3093.2022.090
ARTICLES Current Issue | Archive | Adv Search |
Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior
ZHU Xuedong1, ZHANG Shuang1(), ZOU Cunlei1, LIU Lingen2, ZHU Zhihao2, WAN Peng3, DONG Chuang1,2
1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
3.Foshan Shunde Midea Electric Heating Appliance Manufacturing Co. Ltd., Foshan 528300, China
Cite this article: 

ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior. Chinese Journal of Materials Research, 2023, 37(4): 281-290.

Download:  HTML  PDF(8920KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to the principle of cluster-plus-glue-atom model, the composition of a novel Zr-Cu-Al-Ni alloy with glass formation ability was designed by taking the alloy Zr55Cu30Al10Ni5 as reference. In the quaternary Zr-Cu-Al-Ni system, two crystallization phases CuZr2 and CuZr related with amorphous formation were firstly identified, the local structures of these two clusters can be expressed as [Cu-Zr8Cu4] and [Cu-Zr8Cu6] respectively; then, by combining these two clusters in equal proportion while coupling with the number of glue atoms 2, 4, or 6, the dual-cluster formulas for total atom number of 30, 32, or 34 respectively may be constructed by means of the dual-cluster model. Furthermore, according to dual- cluster formula of the total number of atoms of 32, a quaternary alloy with composition Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3 was tentatively designed, which is closest to the reference Zr55Cu30Al10Ni5. The glass formation ability of this alloy was tested experimentally. The results show that its Trg reaches 0.6 and its crystallization activation energy is 334.138 kJ/mol, which are all slightly higher than that of the reference alloy, indicating that the designed alloy has a higher glass formation ability.

Key words:  metallic materials      composition optimization      cluster-plus-glue-atom model      glass formation ability      bulk metallic glasses      crystallization behavior     
Received:  07 February 2022     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(52101127);National Natural Science Foundation of China(51901033);Natural Science Foundation of Liaoning Province(2020-BS-208);Natural Science Foundation of Liaoning Province(2020-BS-207);Open Project of Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology(KF2006);Shunde District Science and Technology Project(201911220001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.090     OR     https://www.cjmr.org/EN/Y2023/V37/I4/281

Phase name
CuZr2
Structure type
MoSi2
Pearson symbol
tI6
Space group
I4/mmm
No.139
a=0.32204(4) nmc=1.11832(6) nm
Cu2a4/mmmx=0y=0z =0Occ.=1
Zr4e4mmx=0y=0z =0.34Occ.=1
Table 1  Structure information of CuZr2 phase[22]
Fig.1  Two kinds of clusters in CuZr2 phase (a) [Cu-Zr8Cu4] with Cu atom as the center and (b) [Zr-Cu4Zr9] with Zr atom as the center, with the yellow spheres representing Zr atoms and the red ones representing Cu atoms
Phase name
CuZr
Structure type
ClCs
Pearson symbol
cP2
Space group
Pm3¯m
No.221
a=0.32620(5) nm
Cu1am3¯mx=0y=0z=0Occ.=1
Zr1bm3¯mx=1/2y=1/2z=1/2Occ.=1
Table 2  Structure information of CuZr phase[22]
Fig.2  Two kinds of clusters in CuZrphase (a) [Cu-Zr8Cu6] with Cu atom as the center and (b) [Zr-Cu8Zr6] with Zr atom as the center, with the grey spheres representing Zr atoms and the blue ones representing Cu atoms
Fig.3  X-ray diffraction spectrogram of 5 mm Zr17Cu10-Al3Ni2 BMG
Fig.4  EDS area scan analysis of Zr17Cu10Al3Ni2 BMG
ElementLine typeConcentration / mol·L-1Mass fraction/%Atomic fraction/%
AlK1.583.248.89
NiK3.035.286.67
CuL9.0228.4833.24
ZrL27.8563.0051.20
Total100.00100.00
Table 3  Composition of glassy matrix in Zr17Cu10Al3Ni2 after EDS area scan
Fig.5  Microstructure of Zr17Cu10Al3Ni2 BMG
ElementLine type

Concentration

/ mol·L-1

Mass fraction /%

Atomic fraction

/%

AlK3.466.9118.04
NiK1.863.313.98
CuL8.2025.5528.35
ZrL27.9464.2349.63
Total100.00100.00
Table 4  Composition of a precipitated crystal after EDS
Fig.6  Curves of DSC (a) and DTA curve (b) of the Zr17Cu10Al3Ni2 bulk metallic glass at the heating rate of 10 K/min and a constant heating rate
Fig.7  DSC traces of the Zr17Cu10Al3Ni2 bulk metallic glass at different heating rates, where the measured heat flow, in arbitrary unit, points downwards, showing heat-absorption reactions
Fig.8  DTA traces of the Zr17Cu10Al3Ni2 bulk metallic glass at different heating rates, where the measured heat flow, in arbitrary unit, points upwards, showing heat-release reactions
Fig.9  Kissinger plots of the Zr17Cu10Al3Ni2 bulk metallic glass

Heating rates

/K·min-1

Tg

/K

Tx

/K

ΔTx

/K

Tp

/K

Tm

/K

Tl

/K

Trg
571076050769113811650.6
1071577358778114211730.6
2072378461787114311930.6
3072679064793114712080.6
4072779468798114812100.6
Table 5  Thermal parameters of Zr17Cu10Al3Ni2 BMG at different heating rates
Fig.10  XRD patterns of Zr17Cu10Al3Ni2 with complete crystallization after heat treatment for 1 hour at 800 K
Fig.11  EDS area scan analysis of the annealed alloy Zr17Cu10Al3Ni2
Fig.12  Microstructure diagram of the annealed Zr17Cu10Al3Ni2 BMG,in which 1 and 2 representing CuZr2 phases, 3 and 4 representing CuZr phases
PointCuZrAlNi
122.8662.737.916.50
223.0661.148.757.05
328.5449.3618.283.83
432.3752.278.486.88
Table 6  EDS analysis of points in Fig.12 (atomic fraction, %)
1 Wang W H. A brief history of metallic glasses[J]. Physics, 2011, 40: 701
汪卫华. 金属玻璃研究简史[J]. 物理, 2011, 40: 701
2 Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
doi: 10.1016/0001-6160(74)90112-6
3 Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method[J]. Mater. Trans., JIM, 1996, 37: 185
4 Wang H J, Chen S S, Hu Q, et al. The glass-forming ability and die casting performance of Zr-based bulk metallic glasses[J]. Mater. Sci. Technol., 2020, 28(5): 38
王浩杰, 陈双双, 胡 强 等. Zr基块体非晶合金玻璃形成能力与压铸成型性能研究[J]. 材料科学与工艺, 2020, 28(5): 38
5 Turnbull D. Under what conditions can a glass be formed?[J]. Contemp. Phys., 1969, 10: 473
doi: 10.1080/00107516908204405
6 Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses[J]. Acta Mater., 2002, 50: 3501
doi: 10.1016/S1359-6454(02)00166-0
7 Wu Z F. Thermal analysis kinetics and its application in bulk amorphous alloy[J]. Mater. Rev., 2011, 25(18): 262
吴志方. 热分析动力学及其在大块非晶合金研究中的应用[J]. 材料导报, 2011, 25(18): 262
8 Gao Y L, Shen J, Sun J F, et al. Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region[J]. Mater. Lett., 2003, 57: 1894
doi: 10.1016/S0167-577X(02)01096-0
9 Yavari A R, Uriarte J L, Tousimi K, et al. In-situ detection of the onset crystallisation of Zr55Cu30Al10Ni5 from the bulk glass and the liquid states using synchrotron radiation[J]. Mater. Sci. Forum, 1999, 307: 17
doi: 10.4028/www.scientific.net/MSF.307
10 Zhang Q S, Deng Y F, He L L, et al. Isothermal nanocrystallization of Zr55Al10Ni5-Cu30 bulk amorphous alloy near the glass transition temperature[J]. Acta Metall. Sin., 2003, 39: 301
张庆生, 邓玉福, 贺连龙 等. Zr55Al10Ni5Cu30块状非晶合金靠近玻璃转变点的等温纳米晶化[J]. 金属学报, 2003, 39: 301
11 De Oliveira M F, Botta F W J, Kaufman M J, et al. Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen[J]. J. Non-Cryst. Solids, 2002, 304: 51
doi: 10.1016/S0022-3093(02)01003-7
12 Hu Q, Lin X, Yang G L, et al. Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metall. Sin., 2012, 48: 1467
doi: 10.3724/SP.J.1037.2012.00433
胡 桥, 林 鑫, 杨高林 等. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48: 1467
13 Wu Z F. Effect of differential thermal analysis experimental condition on crystallization behavior of bulk amorphous alloy Zr55Cu30Al10Ni5 [J]. Hot Work. Technol., 2013, 42(10): 106
吴志方. 差热分析实验条件对大块非晶合金Zr55Cu30Al10Ni5晶化行为的影响[J]. 热加工工艺, 2013, 42(10): 106
14 Arias D, Abriata J P. Cu-Zr (copper-zirconium)[J]. J. Phase Equilib., 1990, 11: 452
doi: 10.1007/BF02898260
15 Sakata M, Cowlam N, Davies H A. Chemical short-range order in liquid and amorphous Cu66Ti34 alloys[J]. J. Phys., 1981, 11F: L157
16 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
17 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
18 Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
19 Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
耿遥祥, 王英敏, 羌建兵 等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
20 Zhang S, Dong D D, Wang Z J, et al. Spherical periodicity as structural homology of crystalline and amorphous states[J]. Sci. China Mater., 2018, 61: 409
doi: 10.1007/s40843-017-9161-4
21 Wang Z J, Dong D D, Zhang S. Characteristics of cluster formulas for binary bulk metallic glasses[J]. J. Alloys Compd., 2016, 654: 340
doi: 10.1016/j.jallcom.2015.08.244
22 Pierre V. Pearson's handbook desk edition[J]. Crystallogr. Data Intermet Phases., 1997, 1: 2
23 Köster U, Herold U. Crystallization of metallic glasses[A]. GüntherodtHJ, BeckH. Glassy Metals I[M]. Berlin Heidelberg: Springer, 1981: 225
24 Kneller E, Khan Y, Gorres U. ChemInform abstract: the alloy system copper-zirconium. Part 1. phase diagram and structural relations[J]. Chem. Informationsdienst, 1986, 17: 43
25 Kalay I, Kramer M J, Napolitano R E. High-accuracy X-ray diffraction analysis of phase evolution sequence during devitrification of Cu50Zr50 metallic glass[J]. Metall. Mater. Trans., 2011, 42A: 1144
26 Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics[J]. Sci. Rep., 2015, 5: 17880
doi: 10.1038/srep17880 pmid: 26658618
27 Fan C, Takeuchi A, Inoue A. Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases[J]. Mater. Trans., JIM, 1999, 40: 42
28 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
29 Inoue A, Zhang T. Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold[J]. Mater. Trans., JIM, 1995, 36: 1184
30 Kawamura Y, Shibata T, Inoue A, et al. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass[J]. Acta Mater., 1998, 46: 253
doi: 10.1016/S1359-6454(97)00235-8
31 Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J]. Mater. Trans., JIM, 1990, 31: 177
32 Inoue A, Zhang T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy[J]. Mater. Trans., JIM, 1996, 37: 1726
33 Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels[J]. Phys. Rev. Lett., 2004, 92: 245503
doi: 10.1103/PhysRevLett.92.245503
34 Inoue A, Zhang T, Kim Y H. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase[J]. Mater. Trans., JIM, 1997, 38: 749
35 Zhang T, Inoue A. Density, thermal stability and mechanical properties of Zr-Ti-Al-Cu-Ni bulk amorphous alloys with high Al plus Ti concentrations[J]. Mater. Trans., JIM, 1998, 39: 857
36 Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!