|
|
Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior |
ZHU Xuedong1, ZHANG Shuang1( ), ZOU Cunlei1, LIU Lingen2, ZHU Zhihao2, WAN Peng3, DONG Chuang1,2 |
1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China 2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China 3.Foshan Shunde Midea Electric Heating Appliance Manufacturing Co. Ltd., Foshan 528300, China |
|
Cite this article:
ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior. Chinese Journal of Materials Research, 2023, 37(4): 281-290.
|
Abstract According to the principle of cluster-plus-glue-atom model, the composition of a novel Zr-Cu-Al-Ni alloy with glass formation ability was designed by taking the alloy Zr55Cu30Al10Ni5 as reference. In the quaternary Zr-Cu-Al-Ni system, two crystallization phases CuZr2 and CuZr related with amorphous formation were firstly identified, the local structures of these two clusters can be expressed as [Cu-Zr8Cu4] and [Cu-Zr8Cu6] respectively; then, by combining these two clusters in equal proportion while coupling with the number of glue atoms 2, 4, or 6, the dual-cluster formulas for total atom number of 30, 32, or 34 respectively may be constructed by means of the dual-cluster model. Furthermore, according to dual- cluster formula of the total number of atoms of 32, a quaternary alloy with composition Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3 was tentatively designed, which is closest to the reference Zr55Cu30Al10Ni5. The glass formation ability of this alloy was tested experimentally. The results show that its Trg reaches 0.6 and its crystallization activation energy is 334.138 kJ/mol, which are all slightly higher than that of the reference alloy, indicating that the designed alloy has a higher glass formation ability.
|
Received: 07 February 2022
|
|
Fund: National Natural Science Foundation of China(52101127);National Natural Science Foundation of China(51901033);Natural Science Foundation of Liaoning Province(2020-BS-208);Natural Science Foundation of Liaoning Province(2020-BS-207);Open Project of Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology(KF2006);Shunde District Science and Technology Project(201911220001) |
1 |
Wang W H. A brief history of metallic glasses[J]. Physics, 2011, 40: 701
|
|
汪卫华. 金属玻璃研究简史[J]. 物理, 2011, 40: 701
|
2 |
Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
doi: 10.1016/0001-6160(74)90112-6
|
3 |
Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method[J]. Mater. Trans., JIM, 1996, 37: 185
|
4 |
Wang H J, Chen S S, Hu Q, et al. The glass-forming ability and die casting performance of Zr-based bulk metallic glasses[J]. Mater. Sci. Technol., 2020, 28(5): 38
|
|
王浩杰, 陈双双, 胡 强 等. Zr基块体非晶合金玻璃形成能力与压铸成型性能研究[J]. 材料科学与工艺, 2020, 28(5): 38
|
5 |
Turnbull D. Under what conditions can a glass be formed?[J]. Contemp. Phys., 1969, 10: 473
doi: 10.1080/00107516908204405
|
6 |
Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses[J]. Acta Mater., 2002, 50: 3501
doi: 10.1016/S1359-6454(02)00166-0
|
7 |
Wu Z F. Thermal analysis kinetics and its application in bulk amorphous alloy[J]. Mater. Rev., 2011, 25(18): 262
|
|
吴志方. 热分析动力学及其在大块非晶合金研究中的应用[J]. 材料导报, 2011, 25(18): 262
|
8 |
Gao Y L, Shen J, Sun J F, et al. Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region[J]. Mater. Lett., 2003, 57: 1894
doi: 10.1016/S0167-577X(02)01096-0
|
9 |
Yavari A R, Uriarte J L, Tousimi K, et al. In-situ detection of the onset crystallisation of Zr55Cu30Al10Ni5 from the bulk glass and the liquid states using synchrotron radiation[J]. Mater. Sci. Forum, 1999, 307: 17
doi: 10.4028/www.scientific.net/MSF.307
|
10 |
Zhang Q S, Deng Y F, He L L, et al. Isothermal nanocrystallization of Zr55Al10Ni5-Cu30 bulk amorphous alloy near the glass transition temperature[J]. Acta Metall. Sin., 2003, 39: 301
|
|
张庆生, 邓玉福, 贺连龙 等. Zr55Al10Ni5Cu30块状非晶合金靠近玻璃转变点的等温纳米晶化[J]. 金属学报, 2003, 39: 301
|
11 |
De Oliveira M F, Botta F W J, Kaufman M J, et al. Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen[J]. J. Non-Cryst. Solids, 2002, 304: 51
doi: 10.1016/S0022-3093(02)01003-7
|
12 |
Hu Q, Lin X, Yang G L, et al. Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metall. Sin., 2012, 48: 1467
doi: 10.3724/SP.J.1037.2012.00433
|
|
胡 桥, 林 鑫, 杨高林 等. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48: 1467
|
13 |
Wu Z F. Effect of differential thermal analysis experimental condition on crystallization behavior of bulk amorphous alloy Zr55Cu30Al10Ni5 [J]. Hot Work. Technol., 2013, 42(10): 106
|
|
吴志方. 差热分析实验条件对大块非晶合金Zr55Cu30Al10Ni5晶化行为的影响[J]. 热加工工艺, 2013, 42(10): 106
|
14 |
Arias D, Abriata J P. Cu-Zr (copper-zirconium)[J]. J. Phase Equilib., 1990, 11: 452
doi: 10.1007/BF02898260
|
15 |
Sakata M, Cowlam N, Davies H A. Chemical short-range order in liquid and amorphous Cu66Ti34 alloys[J]. J. Phys., 1981, 11F: L157
|
16 |
Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
|
17 |
Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
|
18 |
Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
|
19 |
Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
|
|
耿遥祥, 王英敏, 羌建兵 等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
|
20 |
Zhang S, Dong D D, Wang Z J, et al. Spherical periodicity as structural homology of crystalline and amorphous states[J]. Sci. China Mater., 2018, 61: 409
doi: 10.1007/s40843-017-9161-4
|
21 |
Wang Z J, Dong D D, Zhang S. Characteristics of cluster formulas for binary bulk metallic glasses[J]. J. Alloys Compd., 2016, 654: 340
doi: 10.1016/j.jallcom.2015.08.244
|
22 |
Pierre V. Pearson's handbook desk edition[J]. Crystallogr. Data Intermet Phases., 1997, 1: 2
|
23 |
Köster U, Herold U. Crystallization of metallic glasses[A]. GüntherodtHJ, BeckH. Glassy Metals I[M]. Berlin Heidelberg: Springer, 1981: 225
|
24 |
Kneller E, Khan Y, Gorres U. ChemInform abstract: the alloy system copper-zirconium. Part 1. phase diagram and structural relations[J]. Chem. Informationsdienst, 1986, 17: 43
|
25 |
Kalay I, Kramer M J, Napolitano R E. High-accuracy X-ray diffraction analysis of phase evolution sequence during devitrification of Cu50Zr50 metallic glass[J]. Metall. Mater. Trans., 2011, 42A: 1144
|
26 |
Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics[J]. Sci. Rep., 2015, 5: 17880
doi: 10.1038/srep17880
pmid: 26658618
|
27 |
Fan C, Takeuchi A, Inoue A. Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases[J]. Mater. Trans., JIM, 1999, 40: 42
|
28 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
|
29 |
Inoue A, Zhang T. Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold[J]. Mater. Trans., JIM, 1995, 36: 1184
|
30 |
Kawamura Y, Shibata T, Inoue A, et al. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass[J]. Acta Mater., 1998, 46: 253
doi: 10.1016/S1359-6454(97)00235-8
|
31 |
Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J]. Mater. Trans., JIM, 1990, 31: 177
|
32 |
Inoue A, Zhang T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy[J]. Mater. Trans., JIM, 1996, 37: 1726
|
33 |
Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels[J]. Phys. Rev. Lett., 2004, 92: 245503
doi: 10.1103/PhysRevLett.92.245503
|
34 |
Inoue A, Zhang T, Kim Y H. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase[J]. Mater. Trans., JIM, 1997, 38: 749
|
35 |
Zhang T, Inoue A. Density, thermal stability and mechanical properties of Zr-Ti-Al-Cu-Ni bulk amorphous alloys with high Al plus Ti concentrations[J]. Mater. Trans., JIM, 1998, 39: 857
|
36 |
Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|