Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 123-132    DOI: 10.11901/1005.3093.2021.207
ARTICLES Current Issue | Archive | Adv Search |
Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel
LUO Hanyu, CAO Jianchun(), ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

LUO Hanyu, CAO Jianchun, ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling. Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel. Chinese Journal of Materials Research, 2022, 36(2): 123-132.

Download:  HTML  PDF(14710KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The recrystallization and precipitates of deformed austenite for three Ti-microalloyed low carbon steels with different amount of Zr and Ti in the temperature range of 950°C to 1050°C were investigated by means of multi-pass compression test to simulate the actual rolling situation, in order to acquire the optimum deformation temperature for the alloys. The results show that the increase of Ti content will retard the occurrence of the recrystallization of deformed austenite and the recrystallization grain growth in Ti-microalloyed steels, while the addition of Zr will also retard the occurrence of recrystallization of deformed austenite in Ti-microalloy steel, and inhibit the growth of recrystallization grains. Besides, the addition of Zr increases the number of precipitates in Ti-microalloyed steel, and improves the size uniformity of precipitated phase, so that the Ti-Zr microalloyed steel consists of a relatively uniform austenite microstructure. When the deformation temperature is 1000℃, the Ti-Zr microalloyed steel has the finest uniform austenite microstructure.

Key words:  metallic materials      Ti microalloyed steel      multi-pass      recrystallization      precipitates     
Received:  02 April 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51761019)
About author:  CAO Jianchun, Tel: 13187889483, E-mail: nmcjc@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.207     OR     https://www.cjmr.org/EN/Y2022/V36/I2/123

No.CSiMnSPNTiZrFe
0.13Ti0.0460.211.500.0050.00410.00190.13-Bal.
0.18Ti0.0470.221.480.0050.00730.00140.18-Bal.
Ti-Zr0.0480.221.500.0050.00720.00120.130.035Bal.
Table 1  Chemical compositions of experimental steels (mass fraction, %)
Fig.1  Technological route map of thermal simulation experiment
Fig.2  Isothermal multi-pass deformation stress-strain curve (a) 0.13Ti steel; (b) 0.18Ti steel; (c) Ti-Zr steel
Fig.3  Peak stress of each pass at different deformation temperatures (a) 950℃; (b) 1000℃; (c) 1050℃
Fig.4  The original austenite grain morphology of three experimental steels heated at 1200℃ for 5 min (a) 0.13Ti steel; (b) 0.18Ti steel; (c) Ti-Zr steel
Fig.5  The original austenite grain morphology of three experimental steels after of isothermal multi-pass deformation (a, b, c) 0.13Ti steel; (d, e, f) 0.18Ti steel; (g, h, f) Ti-Zr steel; (a, d, g) 950℃; (b, e, h) 1000℃; (e, f, i) 1050℃
Fig.6  STEM morphology and energy spectrum of precipitates after isothermal multi-pass deformation at 1000℃ (a) 0.13Ti steel; (b) 0.18Ti steel; (c) Ti-Zr steel
Fig.7  STEM morphology and element distribution of the twin phase in Ti-Zr steel (a) shape and distribution of the twin phase; (b) element line scanning results of the red arrow of the upper precipitates in figure a; (c) element line scanning results of the red arrow of the lower precipitates in figure a
Fig.8  Austenite recrystallization grain size distribution of three experimental steels after isothermal multi-pass deformation (a) 1000℃; (b) 1050℃
Fig.9  Average austenite recrystallization grain size of three experimental steels after isothermal multi-pass deformation
No.Temperature / ℃
10001050
0.13Ti0.4170.463
0.18Ti0.5160.444
Ti-Zr0.3960.432
Table 2  Non-uniformity of austenite grain size distribution of three experimental steels
Fig.10  Variation of microalloyed element solid solution amount [Zr], [Ti], [C] and [N] in three experimental steels with temperature (a) 0.13Ti steel; (b) 0.18Ti steel; (c) Ti-Zr steel
1 Wang L , Xiao S F , Tang Z H , et al . Study of static recrystallization behavior of austenite in a Ti-V microalloyed steel [J]. Mater. Express, 2020, 10: 1047
2 Oliveira A P , Gonzalez B M . The engineering behind the mechanical properties enhancement on HSLA steels, microalloyed with niobium: Effects of boron and titanium [J]. J. Mater. Res. Technol. 2020, 9: 9372
3 Gui L T , Long M J , Zhang H H , et al . Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model [J]. J. Mater. Res. Technol., 2020, 9: 5499
4 Grange R A . Boron, Calcium, Columbium and Zirconium in Iron and Steel [M]. New York: John Wiley and Sons, 1957: 141
5 Baker T N . Role of zirconium in microalloyed steels: a review [J]. Mater. Sci. Technol., 2015, 31: 265
6 Wang H R , Wang W , Gao J Q . Precipitates in two Zr-bearing HSLA steel plates [J]. Mater. Lett., 2010, 64: 219
7 Zheng L , Yuan Z X , Song S H , et al . Austenite grain growth in heat affected zone of Zr-Ti bearing microalloyed steel [J]. J. Iron Steel Res Int., 2012, 19: 73
8 Maia A R B , Guinancio C R , Germano R L , et al . Use of zirconium in microalloyed steels [J]. Adv. Mater. Res., 2007, 59: 834
9 He K , Baker T N . Effect of zirconium additions on austenite grain coarsening of C-Mn and microalloy steels [J]. Mater. Sci. Eng., A, 1998, 256: 111
10 Shi M H , Kannan R , Zhang J , et al . Effect of Zr microalloying on austenite grain size of low-carbon steels [J]. Metall. Mater. Trans. B, 2019, 50:2574
11 Xu G , Gan X L , Ma G J , et al . The development of Ti-alloyed high strength microalloy steel [J]. Mater Des, 2010, 31:2891
12 Huo X D , Xia J N , Li L J , et al . A review of research and development on titanium microalloyed high strength steels [J]. Iron Steel Vanadium Titanium, 2017, 38: 105
霍向东, 夏继年, 李烈军 等 . 钛微合金化高强钢的研究与发展 [J]. 钢铁钒钛, 2017, 38: 105
13 Meng C F , Wang Y D , Wei Y H , et al . Strengthening mechanisms for Ti- and Nb-Ti-micro-alloyed high-strength steels [J]. J. Iron Steel Res. Int., 2016, 23: 350
14 Zhang K , Li Z D , Sun X J , et al . Development of Ti-V-Mo complex microalloyed Hot-Rolled 900-MPa-grade high-strength steel [J]. Acta Metall. Sin. (Fngl. Let.), 2015, 28: 641
15 Wang Z Q , Zhang H , Guo C H , et al . Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels [J]. J. Mater. Sci., 2016, 51: 4996
16 Liu P C , Cao J C , Yin S B , et al . Effect of Zr on undissolved phases and carbide precipitation in Ti microalloyed low-carbon steel [J]. J. Iron Steel Res. Int., 2019, 26: 720
17 Hou L .Study on microstructure evolution and controlled rolling and controlled cooling process of titanium microalloyed steel [D]. Zhenjiang: Jiangsu University, 2017
侯 亮 . 钛微合金钢的组织演变规律和控轧控冷工艺研究 [D]. 镇江: 江苏大学, 2017
18 Humphreys F J , Hatherly M . Recrystallization and Related Annealing Phenomena [M]. 2nd Ed, Amsterdam: Elsevier, 2004: 215
19 Homsher C N . Determination of the non-recrystallization temperature (TNR) in multiple microalloyed steels [D]. Colorado: Colorado School of Mines, 2013
20 Yang W C . Study on dynamic recrystallization and strain-induced precipitation behavior of HG785 steel [D]. Wuhan: Wuhan University of Science and Technology, 2015
杨文钗 . HG785钢动态再结晶与应变诱导析出行为的研究 [D]. 武汉: 武汉科技大学, 2015
21 Zeng M , Cao J C . Effect of Zr on dynamic recrystallization behavior of Ti-microalloyed low carbon steels. Steel Res. Int., 2020, 91.
22 Yang W Y , Hu A M , Sun Z Q . Control of austenite grain size in a low carbon steel [J]. Acta Metall. Sin., 2000, 36: 1050
杨王明, 胡安民, 孙祖庆 . 低碳钢奥氏体晶粒尺寸的控制 [J]. 金属学报, 2000, 36: 1050
23 Yang H L , Xu G , Wang L , et al . A study of growth of austenite grains in a steel microalloyed with Ti and Nb [J]. Met. Sci. Heat Treat., 2017, 59(1-2): 8
24 Akben M J , Weiss I , Jonas J J . Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29: 111
25 Zhao L Q , Zhao Y , Xu X Q , et al . Dynamic recrystallization and precipitation behavior of a kind of low carbon V-microalloyed steel [J]. Acta Metall. Sin., 2010, 46: 1215
陈礼清, 赵 阳, 徐香秋, 等 . 一种低碳钒微合金钢的动态再结晶与析出行为 [J]. 金属学报, 2010, 46: 1215
26 Mao X P . Titanium Microalloyed Steel [M]. Beijing: Metallurgical Industry Press, 2016: 2
毛新平 . 钛微合金钢 [M]. 北京: 冶金工业出版社, 2016: 2
27 Sá E R , Rodrigues S F , Aranas C , et al . Softening-precipitation interaction in a Nb-and N-bearing austenitic stainless steel under stress relaxation [J]. J. Mater. Res. Technol., 2020, 9: 7807
28 Zhang K , Sun X J , Zhang M Y , et al . Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
张 可, 孙新军, 张明亚 等 . Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
29 Yong Q L . Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 1
雍岐龙 . 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
30 Ma X P , Miao C L , Langelier B , et al . Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel [J]. Mater. Des., 2017, 132: 244
31 Gong P , Liu X G , Rijkenberg A , et al . The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium [J]. Acta Mater., 2018, 161: 374
32 Strid J , Easterling K E . On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metall., 1985, 33: 2057
33 Wang F M , Han Q Y . Formation mechanism of complex microalloying carbonitride in steels [J]. Iron Steel, 1995, 30: 50
王福明, 韩其勇 . 钢中微合金碳氮化物复合相的形成机制 [J]. 钢铁, 1995, 30: 50
34 Wang F L . Study on precipitation behaviors of V and Nb in microalloyed steel bars [D]. Chongqing: Chongqing University, 2016
王方丽 . 微合金化钢筋中V、Nb析出行为研究 [D]. 重庆: 重庆大学, 2016
35 Feng R , Li S L , Li Z S , et al . Characteristics of diphase precipitates of Nb-V-Ti microalloyed steel [J]. Trans. Mater. Heat Treat., 2013, 34: 37
冯 锐, 李胜利, 李贞顺 等 . Nb-V-Ti微合金钢复合析出相的特征 [J]. 材料热处理学报, 2013, 34: 37
36 Jang J H , Lee C H , Heo Y U , et al . Stability of (Ti,M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2011, 60: 208
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!