|
|
Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel |
LUO Hanyu, CAO Jianchun( ), ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling |
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
Cite this article:
LUO Hanyu, CAO Jianchun, ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling. Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel. Chinese Journal of Materials Research, 2022, 36(2): 123-132.
|
Abstract The recrystallization and precipitates of deformed austenite for three Ti-microalloyed low carbon steels with different amount of Zr and Ti in the temperature range of 950°C to 1050°C were investigated by means of multi-pass compression test to simulate the actual rolling situation, in order to acquire the optimum deformation temperature for the alloys. The results show that the increase of Ti content will retard the occurrence of the recrystallization of deformed austenite and the recrystallization grain growth in Ti-microalloyed steels, while the addition of Zr will also retard the occurrence of recrystallization of deformed austenite in Ti-microalloy steel, and inhibit the growth of recrystallization grains. Besides, the addition of Zr increases the number of precipitates in Ti-microalloyed steel, and improves the size uniformity of precipitated phase, so that the Ti-Zr microalloyed steel consists of a relatively uniform austenite microstructure. When the deformation temperature is 1000℃, the Ti-Zr microalloyed steel has the finest uniform austenite microstructure.
|
Received: 02 April 2021
|
|
Fund: National Natural Science Foundation of China(51761019) |
About author: CAO Jianchun, Tel: 13187889483, E-mail: nmcjc@163.com
|
1 |
Wang L , Xiao S F , Tang Z H , et al . Study of static recrystallization behavior of austenite in a Ti-V microalloyed steel [J]. Mater. Express, 2020, 10: 1047
|
2 |
Oliveira A P , Gonzalez B M . The engineering behind the mechanical properties enhancement on HSLA steels, microalloyed with niobium: Effects of boron and titanium [J]. J. Mater. Res. Technol. 2020, 9: 9372
|
3 |
Gui L T , Long M J , Zhang H H , et al . Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model [J]. J. Mater. Res. Technol., 2020, 9: 5499
|
4 |
Grange R A . Boron, Calcium, Columbium and Zirconium in Iron and Steel [M]. New York: John Wiley and Sons, 1957: 141
|
5 |
Baker T N . Role of zirconium in microalloyed steels: a review [J]. Mater. Sci. Technol., 2015, 31: 265
|
6 |
Wang H R , Wang W , Gao J Q . Precipitates in two Zr-bearing HSLA steel plates [J]. Mater. Lett., 2010, 64: 219
|
7 |
Zheng L , Yuan Z X , Song S H , et al . Austenite grain growth in heat affected zone of Zr-Ti bearing microalloyed steel [J]. J. Iron Steel Res Int., 2012, 19: 73
|
8 |
Maia A R B , Guinancio C R , Germano R L , et al . Use of zirconium in microalloyed steels [J]. Adv. Mater. Res., 2007, 59: 834
|
9 |
He K , Baker T N . Effect of zirconium additions on austenite grain coarsening of C-Mn and microalloy steels [J]. Mater. Sci. Eng., A, 1998, 256: 111
|
10 |
Shi M H , Kannan R , Zhang J , et al . Effect of Zr microalloying on austenite grain size of low-carbon steels [J]. Metall. Mater. Trans. B, 2019, 50:2574
|
11 |
Xu G , Gan X L , Ma G J , et al . The development of Ti-alloyed high strength microalloy steel [J]. Mater Des, 2010, 31:2891
|
12 |
Huo X D , Xia J N , Li L J , et al . A review of research and development on titanium microalloyed high strength steels [J]. Iron Steel Vanadium Titanium, 2017, 38: 105
|
|
霍向东, 夏继年, 李烈军 等 . 钛微合金化高强钢的研究与发展 [J]. 钢铁钒钛, 2017, 38: 105
|
13 |
Meng C F , Wang Y D , Wei Y H , et al . Strengthening mechanisms for Ti- and Nb-Ti-micro-alloyed high-strength steels [J]. J. Iron Steel Res. Int., 2016, 23: 350
|
14 |
Zhang K , Li Z D , Sun X J , et al . Development of Ti-V-Mo complex microalloyed Hot-Rolled 900-MPa-grade high-strength steel [J]. Acta Metall. Sin. (Fngl. Let.), 2015, 28: 641
|
15 |
Wang Z Q , Zhang H , Guo C H , et al . Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels [J]. J. Mater. Sci., 2016, 51: 4996
|
16 |
Liu P C , Cao J C , Yin S B , et al . Effect of Zr on undissolved phases and carbide precipitation in Ti microalloyed low-carbon steel [J]. J. Iron Steel Res. Int., 2019, 26: 720
|
17 |
Hou L .Study on microstructure evolution and controlled rolling and controlled cooling process of titanium microalloyed steel [D]. Zhenjiang: Jiangsu University, 2017
|
|
侯 亮 . 钛微合金钢的组织演变规律和控轧控冷工艺研究 [D]. 镇江: 江苏大学, 2017
|
18 |
Humphreys F J , Hatherly M . Recrystallization and Related Annealing Phenomena [M]. 2nd Ed, Amsterdam: Elsevier, 2004: 215
|
19 |
Homsher C N . Determination of the non-recrystallization temperature (TNR) in multiple microalloyed steels [D]. Colorado: Colorado School of Mines, 2013
|
20 |
Yang W C . Study on dynamic recrystallization and strain-induced precipitation behavior of HG785 steel [D]. Wuhan: Wuhan University of Science and Technology, 2015
|
|
杨文钗 . HG785钢动态再结晶与应变诱导析出行为的研究 [D]. 武汉: 武汉科技大学, 2015
|
21 |
Zeng M , Cao J C . Effect of Zr on dynamic recrystallization behavior of Ti-microalloyed low carbon steels. Steel Res. Int., 2020, 91.
|
22 |
Yang W Y , Hu A M , Sun Z Q . Control of austenite grain size in a low carbon steel [J]. Acta Metall. Sin., 2000, 36: 1050
|
|
杨王明, 胡安民, 孙祖庆 . 低碳钢奥氏体晶粒尺寸的控制 [J]. 金属学报, 2000, 36: 1050
|
23 |
Yang H L , Xu G , Wang L , et al . A study of growth of austenite grains in a steel microalloyed with Ti and Nb [J]. Met. Sci. Heat Treat., 2017, 59(1-2): 8
|
24 |
Akben M J , Weiss I , Jonas J J . Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29: 111
|
25 |
Zhao L Q , Zhao Y , Xu X Q , et al . Dynamic recrystallization and precipitation behavior of a kind of low carbon V-microalloyed steel [J]. Acta Metall. Sin., 2010, 46: 1215
|
|
陈礼清, 赵 阳, 徐香秋, 等 . 一种低碳钒微合金钢的动态再结晶与析出行为 [J]. 金属学报, 2010, 46: 1215
|
26 |
Mao X P . Titanium Microalloyed Steel [M]. Beijing: Metallurgical Industry Press, 2016: 2
|
|
毛新平 . 钛微合金钢 [M]. 北京: 冶金工业出版社, 2016: 2
|
27 |
Sá E R , Rodrigues S F , Aranas C , et al . Softening-precipitation interaction in a Nb-and N-bearing austenitic stainless steel under stress relaxation [J]. J. Mater. Res. Technol., 2020, 9: 7807
|
28 |
Zhang K , Sun X J , Zhang M Y , et al . Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
|
|
张 可, 孙新军, 张明亚 等 . Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
|
29 |
Yong Q L . Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 1
|
|
雍岐龙 . 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
|
30 |
Ma X P , Miao C L , Langelier B , et al . Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel [J]. Mater. Des., 2017, 132: 244
|
31 |
Gong P , Liu X G , Rijkenberg A , et al . The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium [J]. Acta Mater., 2018, 161: 374
|
32 |
Strid J , Easterling K E . On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metall., 1985, 33: 2057
|
33 |
Wang F M , Han Q Y . Formation mechanism of complex microalloying carbonitride in steels [J]. Iron Steel, 1995, 30: 50
|
|
王福明, 韩其勇 . 钢中微合金碳氮化物复合相的形成机制 [J]. 钢铁, 1995, 30: 50
|
34 |
Wang F L . Study on precipitation behaviors of V and Nb in microalloyed steel bars [D]. Chongqing: Chongqing University, 2016
|
|
王方丽 . 微合金化钢筋中V、Nb析出行为研究 [D]. 重庆: 重庆大学, 2016
|
35 |
Feng R , Li S L , Li Z S , et al . Characteristics of diphase precipitates of Nb-V-Ti microalloyed steel [J]. Trans. Mater. Heat Treat., 2013, 34: 37
|
|
冯 锐, 李胜利, 李贞顺 等 . Nb-V-Ti微合金钢复合析出相的特征 [J]. 材料热处理学报, 2013, 34: 37
|
36 |
Jang J H , Lee C H , Heo Y U , et al . Stability of (Ti,M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2011, 60: 208
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|