Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 107-113    DOI: 10.11901/1005.3093.2020.500
ARTICLES Current Issue | Archive | Adv Search |
Fluorescent Tracing Abilities and Mechanical Properties of Au NCs/HA/PVA Composite Hydrogel
LIAO Jingwen, RAO Chunxing, WANG Yanqin(), CHEN Weiyi
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

LIAO Jingwen, RAO Chunxing, WANG Yanqin, CHEN Weiyi. Fluorescent Tracing Abilities and Mechanical Properties of Au NCs/HA/PVA Composite Hydrogel. Chinese Journal of Materials Research, 2022, 36(2): 107-113.

Download:  HTML  PDF(4129KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite hydrogel of Au NCs/HA/PVA with double network was prepared by means of chemical crosslinking and cyclic freezing-thawing with polyvinyl alcohol (PVA) as raw material, gold nanocluster (Au NCs) and hydroxyapatite (HA) as dopants, and glutaraldehyde as crosslinking agent. The effect of Au NCs content and the number of freezing-thawing cyclics on the physical properties of Au NCs/HA/PVA composite hydrogels was investigated. The results show that the mechanical strength of the gels increased with the increasing number of the freezing-thawing cycles. When the Au NCs content is 2.6% and the number of the freezing-thawing cyclic is 9, the gel has the optimized mechanical properties. The elastic modulus, breaking strength and fracture energy of the gel are 63.09 kPa, 152.84 kPa and 130.36 kJ·m-3, respectively. The moisture content is about 80%, which is similar to the human cartilage tissue, and shows remarkable fluorescence properties.

Key words:  composite      double networks hydrogels      mechanical characterization      gold nanoclusters      fluorescence tracing     
Received:  23 November 2020     
ZTFLH:  R318.08  
Fund: National Natural Science Foundation of China(12172243);Natural Science Foundation of Shanxi Province(20210302123158)
About author:  WANG Yanqin, Tel: (0351)3176655, E-mail: wangyanqin@tyut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.500     OR     https://www.cjmr.org/EN/Y2022/V36/I2/107

Fig.1  Structure diagram of Au NCs/HA/PVA hydrogel
Fig.2  Transmission electron microscopy of Au NCs
Fig.3  Fluorescence spectra of Au NCs
Fig.4  Au NCs/HA/PVA composite hydrogels with different Au NCs contents under natural light (a) and ultraviolet light (b)
Fig.5  Fracture energy of Au NCs/HA/PVA composite hydrogel with different Au NCs content
Fig.6  Fracture stress of Au NCs/HA/PVA composite hydrogel with different Au NCs content
Fig.7  Elastic modulus of Au NCs/HA/PVA composite hydrogel with different Au NCs content during tensile
Fig.8  Elastic modulus of Au NCs/HA/PVA composite hydrogel with different Au NCs content in compression
Fig.9  SEM image of Au NCs5.3/HA/PVA hydrogel
Fig.10  Fracture energy of Au NCs/HA/PVA composite hydrogel after different freezing thawing cycles
Fig.11  Fracture stress of Au NCs/HA/PVA composite hydrogel after different freezing thawing cycles
Fig.12  Elastic modulus of Au NCs/HA/PVA composite hydrogel after different freezing thawing cycles during tensile
Fig.13  Elastic modulus of Au NCs/HA/PVA composite hydrogel after different freezing thawing cycles in compression
Fig.14  Change of swelling ratio of Au NCs/HA/PVA composite hydrogel with different Au NCs content over time
1 Lee K Y , Mooney D J . Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869
2 Niu C , Zhang H J , Yang B . A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight [J]. Colloid Polym. Sci., 2021, 299: 1
3 Pan T , Zhang Y , Wang C H , et al . Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability [J]. Compo. Sci. Technol., 2020, 188: 107991
4 Han X , Li M Y , Fan Z W , et al . PVA/Agar Interpenetrating network hydrogel with fast healing, high strength, antifreeze, and water retention [J]. Macromol. Chem. Phys., 2020, 221: 2070049
5 Ito K . Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions [J]. Polym. J., 2007, 39: 489
6 Yang J , Yu X Q , Sun X B , et al . Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2020, 12: 9736
7 Rivero R E , Molina M A , Rivarola C R , et al . Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite [J]. Sens. Actuat., 2014, 190B: 270
8 Gonzalez J S , Ludueña L N , Ponce A , et al . Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings [J]. Mater. Sci. Eng., 2014, 34C: 54
9 Yang B W , Yuan W Z . Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16765
10 Ramakrishna S , Mayer J , Wintermantel E , et al . Biomedical applications of polymer-composite materials: a review [J]. Compo. Sci. Technol., 2001, 61: 1189
11 Chen J R , Shi X T , Ren L , et al . Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility [J]. Carbon, 2017, 111: 18
12 Morariu S , Bercea M , Gradinaru L M , et al . Versatile poly (vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications [J]. Mater. Sci. Eng., 2020, 109C: 110395
13 Oh S H , An D B , Kim T H , et al . Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior [J]. Acta Biomater., 2016, 35: 23
14 Borghei Y S , Hosseini M , Ganjali M R . Oxidase-like catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection [J]. Sens. Actuat., 2018, 273B: 1618
15 Yu P , Bao R Y , Shi X J , et al . Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering [J]. Carbohydr. Polym., 2017, 155: 507
16 Chen Y M , Dong K , Liu Z Q , et al . Double network hydrogel with high mechanical strength: Performance, progress and future perspective [J]. Sci. China Technol. Sci., 2012, 55: 2241
17 Xu D D , Huang J C , Zhao D , et al . High‐flexibility, high‐toughness double‐cross‐linked chitin hydrogels by sequential chemical and physical cross‐linkings [J]. Adv. Mater., 2016, 28: 5844
18 Rana H H , Park J H , Ducrot E , et al . Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices [J]. Energy Storage Mater., 2019, 19: 197
19 Liu Z Z , Zhang J M , Liu J , et al . Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes [J]. J. Mater. Chem., 2020, 8A: 6219
20 Gong J P , Katsuyama Y , Kurokawa T , et al . Double‐network hydrogels with extremely high mechanical strength [J]. Adv. Mater., 2003, 15: 1155
21 Gao F Y , Wei D L , Zhang X , et al . Research progress of hydrogel and its application in biomedicine [J]. New Chem. Mater., 2018, 46(): 6
高凤苑, 韦东来, 张 鑫 等 . 水凝胶的研究进展及在生物医学方面的应用 [J]. 化工新型材料, 2018, 46(): 6
22 Zhang L , Zhang N , Cao Q F . Research progress in preparation methods of PVA hydrogels [J]. Chem. Ind. Times, 2018, 32(2): 29
张 林, 张 娜, 曹秋枫 . PVA水凝胶制备方法研究进展 [J]. 化工时刊, 2018, 32(2): 29
23 Hu X Y , Fan L D , Qin G , et al . Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor [J]. J. Power Sources, 2019, 414: 201
24 Li W W , Lu H , Zhang N , et al . Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2017, 9: 20142
25 Liu M C , Guo J Y , Hui C Y , et al . Crack tip stress based kinetic fracture model of a PVA dual-crosslink hydrogel [J]. Extreme Mech. Lett., 2019, 29: 100457
26 Gong Z Y , Zhang G P , Zeng X L , et al . High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network [J]. ACS Appl. Mater. Interfaces, 2016, 8: 24030
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!