Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 115-127    DOI: 10.11901/1005.3093.2020.193
ARTICLES Current Issue | Archive | Adv Search |
Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions
TANG Changbin1(), NIU Hao2, HUANG Ping1, WANG Fei2, ZHANG Yujie1, XUE Juanqin1
1.School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions. Chinese Journal of Materials Research, 2021, 35(2): 115-127.

Download:  HTML  PDF(16070KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NF/PDMA/MnO2-Co electrode was prepared by anodic electrodeposition on the foam nickel substrate, and which then was characterized by FESEM-EDS, XPS and Raman spectroscopy. The capacitance characteristics and Pb2+ adsorption behavior of the composite electrode were evaluated by cyclic voltammetry and capacitance adsorption desorption tests. The results show that the NF/PDMA/MnO2-Co composite electrode prepared by applied current density of 1 mA/cm2 at 30 ℃ for 3min has a higher adsorption capacity (59.9 mg/g) and specific capacitance (208.8 F/g) for the simulated wastewater of 20 mg/L Pb2+. The synergistic effect of the bottom layer of PDMA and the top layer of Co doped MnO2 can effectively improve the capacitance and adsorption performance of the MnO2 electrode. The adsorption kinetics fitting shows that the adsorption process is controlled by the mixture of physical and chemical adsorption, and is limited by the mass transfer of ions and the diffusion in pores. The stability of the electrode is higher, and its adsorption capacity is 51.7 mg/g after four cycles of adsorption.

Key words:  surface and interface in the materials      MnO2 electrode      electrodeposition      Pb2+      capacitive deionization     
Received:  28 May 2020     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation(51874227);Natural Science Foundation of Shaanxi Province(2018JM5131)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.193     OR     https://www.cjmr.org/EN/Y2021/V35/I2/115

Fig.1  Sketch of adsorption experiment equipment
Fig.2  Surface morphologies of PDMA electrode (a) and MnO2-Co-3 min electrode (b)
Fig.3  Surface morphology (a) collector; (b~e) electrodes and EDS analysis of the NF/PDMA/MnO2-Co electrode
Fig.4  XPS spectrum of PDMA coating
Fig.5  XPS spectrum of NF/PDMA/MnO2-Co
Fig.6  Raman spectra of PDMA sublayer and NF/PDMA/MnO2-Co electrode surface
Fig.7  CV results of PDMA sublayers (a) and MnO2-Co surface coatings (b) with different deposition time
Fig.8  CV curves of electrodes
Fig.9  Electroadsorption behavior of Pb2 + on three kinds of electrodes
Fig.10  Pb2+ adsorption kinetics fitting (a) quasi-first-order model; (b) quasi-second-order model; (c) simplified Elovich model; (d) Weber-Morris model; (e) Boyd model
ElectrodesCo/mg·L-1qexp/mg·g-1Pseudo first-order kineticsPseudo second-order kinetics
k1/min-1qcal/mg·g-1R2k2/g·mg-1 min-1qcal/mg·g-1R2
NF/MnO2-Co2020.10.041330.50.93480.00040236.10.9958
NF/PDMA2034.10.052363.20.93660.00030857.50.9788
NF/PDMA/MnO2-Co2059.90.034042.30.99400.00089669.40.9967
Table 1  Pb2+ adsorption parameters in according to pseudo first-order and pseudo second-order kinetics fitting for Pb2+ adsorption
Electrodesα/m·(g·min-1)-1β/g·mg-1R2
NF/MnO2-Co1.06750.12930.9943
NF/PDMA2.09140.07560.9928
NF/PDMA/MnO2-Co5.47430.07450.9979
Table 2  Elovich kinetic parameters of Pb2+ adsorption via three electrodes
ElectrodesC0/mg·L-1First linear portionSecond linear portionThird linear portion
K1/mg·min1/2·g-1C1R2K2/mg·min1/2·g-1C2R2R2
NF/MnO2-Co202.171-2.2030.96532.628-3.5080.9987Null
NF/PDMA204.246-4.9760.99694.359-4.7290.9838Null
NF/PDMA/MnO2-Co2013.669-17.4070.99814.2520.470.9847Null
Table 3  Weber-Morris parameters of three electrode for Pb2+ adsorption
Fig.11  cycle stability of three electrodes
1 Gottesfeld P, Cherry C R. Lead emissions from solar photovoltaic energy systems in China and India [J]. Energy Policy, 2011, 39(9): 4939
2 Gunatilake S K. Methods of removing heavy metals from industrial wastewater [J]. JMESS, 2015(1): 12
3 Almarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of capacitive deionisation in water desalination: a review [J]. Desalination, 2014, 342: 3
4 Zhang C X, Jiang Z Y, Dai Y M, et al. Preparation and supercapacitance of C-ZIF-8@AC composites electrode material [J]. Chinese Journal of Materials Research, 2019, 33(5): 352
张传香, 江中仪, 戴玉明等. C-ZIF-8@AC复合电极材料的制备及超电容性能研究 [J]. 材料研究学报, 2019, 33(5): 352
5 Feng X H, Zhai L M, Tan W F, et al. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals [J]. Environ. Pollut., 2007, 147(2): 366
6 Xu J, Sun Y, Lu M, et al. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors [J]. Chem. Eng. J., 2018, 334: 1466
7 Xu W, Jiang Z, Yang Q, et al. Approaching the lithium-manganese oxidesʼ energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor [J]. Nano Energy, 2018, 43: 168
8 Wang J G, Kang F, Wei B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors [J]. Prog. Mater. Sci., 2015, 74: 51
9 Chen Y, Wang M, Hu Y, et al. Poly(2-aminothiophenol)/MnO2 hierarchical nanocables as efficient adsorbents towards heavy metal ions [J]. Mater. Chem. Phys., 2018, 214: 172
10 Yang J, Zou L, Song H, et al. Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology [J]. Desalination, 2011, 276(1-3): 199
11 Yang J, Zou L, Song H. Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation [J]. Desalination, 2012, 286: 108
12 Shi W B, Zhou X C, Li J Y, et al. High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes [J]. Environ. Sci. Technol. Lett., 2018, 5: 692
13 Xiong S, Shi Y, Chen S, et al. Interfacial poly Yan L erization of poly(2,5-dimethoxyaniline) and its enhanced capacitive performances [J]. J. Appl. Polym. Sci., 2014, 131(17): 8407
14 Shao D, Hou G, Li J, et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI) [J]. Chem. Eng. J., 2014, 255(7): 604. 2000, 31(5): 548
15 Yan L S, Wei Q, Wang C Y, et al. Mechanism in electrochemical synthesis of polyaniline film and its doped behaviour [J]. Journal of Functional Materials, 2000, 31(5): 548
颜流水, 魏洽, 王承宜等. 聚胺膜的电化学合成机理及掺杂行为 [J]. 功能材料, 2000, 31(5): 548
16 Tang C B, Lu Y X, Wang F, et al. Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes [J]. Electrochim. Acta, 2020, 331: 135381
17 Shi Y H, Meng H M, Sun D B, et al. The research of manganese oxide coating electrodeby anode electrodeposit process [J]. Heat Treatment Technology and Equipment, 2008(1): 39
史艳华, 孟惠民, 孙冬柏等. 阳极电沉积法制备锰类氧化物涂层电极的研究 [J].热处理技术与装备, 2008(1): 39
18 Ma Y, Hou C, Zhang H, et al. Synthesis of PANI solid microspheres with convex-fold surface via using polyvinylpyrrolidone micellar template [J]. Synth. Met., 2016, 222: 388
19 Huang H, He M, Yang X, et al. One-pot hydrothermal synthesis of TiO2/RCN heterojunction photocatalyst for production of hydrogen and rhodamine B degradation [J]. Appl. Surf. Sci., 2019, 493: 202
20 Jing L, Xu Y, Xie M, et al. Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production [J]. Chem. Eng. J., 2018, 360: 1601
21 Wang Y, Lei Y, Li J, et al. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor [J]. ACS Appl. Mater. Interfaces, 2014, 6(9): 6739
22 Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PANI-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel [J]. Corrosion Sci., 2018, 137: 111
23 He Y, Du S, Li H, et al. MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes [J]. J. Solid State Electrochem., 2016, 20(5): 1459
24 Mezgebe M M, Xu K, Wei G, et al. Polyaniline wrapped manganese dioxide nanorods: Facile synthesis and as an electrode material for supercapacitors with remarkable electrochemical properties [J]. J. Alloy. Compd., 2019, 794: 634
25 Oyedotun K O, Madito M J, Momodu D Y, et al. Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy supercapattery device [J]. Chem. Eng. J., 2018, 335: 416
26 Li Y, Cai X, Shen W. Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition [J]. Electrochim. Acta, 2014, 149: 306
27 Sun Z, Park Y, Zheng S, et al. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study [J]. Thermochim. Acta, 2013, 569(Complete): 151
28 Xiong S, Kong Z, Lan J, et al. Fabrication of high yield and highly crystalline poly(2,5-dimethoxyanline) nanoplates using various organic sulfonic acids as the dopant agents and soft-templates [J]. J. Mater. Sci.-Mater. Electron., 2016, 27(11): 1
29 Bao X J, Zhang Z J, Zhou D B. Pseudo-capacitive performance enhancement of α-MnO2 via in situ coating with polyaniline [J]. Synth. Met., 2020, 260: 112671
30 Yan L J, Niu L Y, Shen C. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M=Fe, Co and Ni) doping [J]. Electrochim. Acta, 2019, 306: 529
31 Zhang H, Gu L, Zhang L, et al. Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2 [J]. Appl. Surf. Sci., 2017, 406: 330
32 Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon [J]. Chem. Eng. Res. Des., 2016, 109: 495
33 Omorogie M O, Babalola J O, Unuabonah E I, et al. Solid phase extraction of hazardous metals from aqua system by nanoparticle-modified agrowaste composite adsorbents [J]. J. Environ. Chem. Eng., 2014, 2(1): 675
34 Runtti H, Tuomikoski S, KangasT, et al. Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions [J]. J. Water. Process. Eng., 2014, 4: 12
35 Zheng X G, Kang F Y, Liu X H, et al. Carbon-coated Mg-Al layered double oxide nanosheets with enhanced removal of hexavalent chromium [J]. J. Ind. Eng. Chem., 2019, 80: 53
36 Eeshwarasinghe D, Loganathan P, Vigneswaran S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon [J]. Chemosphere, 2019, 223: 616
37 Bertagnolli C, da Silva M G C, Guibal E. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula [J]. Chem. Eng. J., 2014, 237: 362
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[14] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!