Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 744-752    DOI: 10.11901/1005.3093.2020.159
ARTICLES Current Issue | Archive | Adv Search |
Effect of Pre-deposited Al Layer on Growth of AlN Buffer Layer and GaN Film on Si Substrate by Metal-organic Chemical Vapor Deposition
ZHEN Longyun1, PENG Peng2, QIU Chenggong1, ZHENG Beirong1, ARMAOU Antonios1,3, ZHONG Rong1()
1. College of Electricity and Mechanics, Wenzhou University, Wenzhou 325035, China
2. Shaanxi Institute of Advanced Optoelectronic Integrated Circuit Technologies, Xi'an 710119, China
3. Department of Chemical Engineering, Pennsylvania State University, University Park 16802, USA
Cite this article: 

ZHEN Longyun, PENG Peng, QIU Chenggong, ZHENG Beirong, ARMAOU Antonios, ZHONG Rong. Effect of Pre-deposited Al Layer on Growth of AlN Buffer Layer and GaN Film on Si Substrate by Metal-organic Chemical Vapor Deposition. Chinese Journal of Materials Research, 2020, 34(10): 744-752.

Download:  HTML  PDF(14446KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Multilayered films of Al/AlN/GaN were deposited on a Si wafer by metal-organic chemical vapor deposition (MOCVD). The microstructure and crystallinity were characterized by means of optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffractometer (XRD), especially in terms of the mechanisms of nucleation and growth of the produced AlN and GaN films with the variations of trimethylaluminum (TMAl) flow during Al pre-deposition process. It was observed that the pre-deposited Al layer helps the nucleation and growth of AlN film and thereafter improves the quality of GaN film. When a thin Al layer was deposited at low TMAl flow, the quality of the AlN film depends on the competition between the nucleation and growth of the high crystallinity AlN thin film with the deposition of the formed clasters of low crystallinity AlN in the gas phase on the surface of silicon wafer. The quality of the AlN film increases with increasing TMAl flow, inducing the formation of GaN film with better quality. When the Al layer is too thick at high TMAl flow, the quality of the AlN film depends on the competition between the nucleation and growth of the high crystallinity AlN thin film with the meltback-etching of Al-Si on the wafer surface. The quality of the AlN film decreases with increasing TMAl flow, inducing the formation of GaN film with worse quality.

Key words:  surface and interface in the materials      growth mechanism      MOCVD      Al pre-deposition      Si substrate      GaN film     
Received:  12 May 2020     
ZTFLH:  O484.4  
Fund: the Intergovernment International Science, Technology and Innovation Cooperation Key Project of the National Key R&D Programme(2016YFE0105900)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.159     OR     https://www.cjmr.org/EN/Y2020/V34/I10/744

Fig.1  AFM images of AlN buffer layers grown on the Si wafer after it has been pre-deposited of Al layer with TMAl flow of (a) 0 sccm, (b) 41.5 sccm, (c) 59.5 sccm, and (d) 77.5 sccm
Fig.2  Root-mean-square of surface roughness (RRMS) of AlN buffer layers corresponding to different TMAl flow characterized by AFM directly
Fig.3  AlN buffer layers corresponding to different TMAl flow characterized by XRD (a) the rocking curves measured between the AlN (002) planes, (b) the FWHM of the rocking curves
Fig.4  OM images of GaN films corresponding to TMAl flow of (a) 0 sccm, (b) 41.5 sccm, (c) 59.5 sccm, and (d) 77.5 sccm
Fig.5  GaN films corresponding to different TMAl flow is characterized by XRD: (a) the rocking curves measured between the GaN (0002) planes, (b) the FWHM of the rocking curves
Type & No.Reaction
G1AlCH3322AlCH33
G2AlCH33AlCH32+CH3
G3AlCH32AlCH3+CH3
S1AlCH33+SAlS+3CH3
S2AlCH32+SAlS+2CH3
S3AlCH3+SAlS+CH3
Table 1  Gas-surface reactions during Al pre-deposition
Type & No.Reaction
G4AlCH33+NH3CH33Al:NH3
G5CH33Al:NH3AlCH33+NH3
G6CH33Al:NH3AlCH32:NH2+CH4
G7CH32Al:NH2AlNG+2CH4
S4AlS+NH3+3CH3AlNS+3CH4
S5xAlS+ySiSAlxSiyS
S62xSiS+2yNH32SixNyS+3yH2
S7AlNG+2SAlNS
Table 2  Gas-surface reactions during the growth of AlN buffer layer
Type & No.Reaction
G8GaCH33GaCH32+CH3
G9GaCH32GaCH3+CH3
G10GaCH33+NH3CH33Ga:NH3
G11CH33Ga:NH3GaCH33+NH3
G12CH33Ga:NH3GaCH32:NH2+CH4
G13CH32Ga:NH2GaNG+2CH4
S8GaCH33+SGaS+3CH3
S9GaCH32+SGaS+2CH3
S10GaCH3+SGaS+CH3
S11GaS+NH3+3CH3GaNS+3CH4
S12xGaS+ySiSGaxSiyS
S132xSiS+2yNH32SixNyS+3yH2
S14GaNG+2SGaNS
Table 3  Gas-surface reactions during the growth of GaN film
[1] Zhu D, Wallis D J, Humphreys C J. Prospects of III-nitride optoelectronics grown on Si [J]. Rep. Prog. Phys., 2013, 76(10): 106501
doi: 10.1088/0034-4885/76/10/106501 pmid: 24088511
[2] Zhang B, Liang H, Wang Y, et al. High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates [J]. J. Cryst. Growth., 2007, 298(Jan): 725
doi: 10.1016/j.jcrysgro.2006.10.170
[3] Jamil M, Grandusky J R, Jindal V, et al. Development of strain reduced GaN on Si (111) by substrate engineering [J]. Appl. Phys. Lett., 2005, 87(8): 082103
doi: 10.1063/1.2012538
[4] Bak S J, Mun D H, Jung K C, et al. Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD [J]. Electron. Mater. Lett., 2013, 9(3): 367
doi: 10.1007/s13391-013-2203-6
[5] Luo R, Xiang P, Liu M, et al. Influence of V/III ratio of low temperature grown AlN interlayer on the growth of GaN on Si substrate [J]. Jpn. J. Appl. Phys, 2011, 50(10): 105501
[6] Krishnan B, Lee S, Li H, et al. Growth of Al-xGa-(1-x)N structures on 8 in Si(111) Substrates [J]. Sens. Mater., 2013, 25(3): 205
[7] Su J, Armour E A, Krishnan B, et al. Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor [J]. J. Mater. Res., 2015, 30(19): 2846
doi: 10.1557/jmr.2015.194
[8] Krost A, Dadgar A. GaN-based optoelectronics on silicon substrates [J]. Mater. Sci. Eng. B., 2002, 93(1-3): 77
doi: 10.1016/S0921-5107(02)00043-0
[9] Cao J, Li R, Fan R, et al. The influence of the Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (111) substrate [J]. J. Cryst. Growth., 2010, 312(14): 2044
doi: 10.1016/j.jcrysgro.2010.03.032
[10] Kim J O, Hong S K, Lim K Y. Crack formation in GaN on Si(111) substrates grown by MOCVD using HT Al-preseeding and HT AlN buffer layers [J]. Phys. Status Solid., 2010, 7(7-8): 2052
[11] Chen Y, Song H, Jiang H, et al. Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism [J]. Appl. Phys. Lett., 2014, 105(19): 1
[12] Jiang Y Z,Cong H L, Xu X M, et al. Al preseeding mechanism study of growing AIN on Si (111) Substrates by MOCVD [J]. Semiconductor Technology, 2013, 038(004): 292
江忠永, 丛宏林, 徐小明等. Si衬底上MOCVD生长AIN的预铺铝机理研究 [J]. 半导体技术, 2013, 038(004): 292
[13] Varshney A, Armaou A. Optimal operation of GaN thin film epitaxy employing control vector parametrization [J]. AICHE J., 2006, 52(4): 1378
doi: 10.1002/(ISSN)1547-5905
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] YANG Wenjing, LI Guangyu, WANG Jian, DING Hua, ZHANG Ning, ZHANG Yanling, HOU Hongliang, LI Zhiqiang. Morphology Evolution of Cavity and Energy Dissipation during Superplastic Deformation of 7B04 Al-alloy[J]. 材料研究学报, 2022, 36(9): 667-678.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[14] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[15] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
No Suggested Reading articles found!