Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 753-760    DOI: 10.11901/1005.3093.2020.137
ARTICLES Current Issue | Archive | Adv Search |
Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy
PAN Yun1,2, LIU Tiancheng1,2(), LI Guangmin1,2, DAI Baiyang2, LV Na2, ZHANG Wei2, TANG Dongdong2
1. China Iron & Steel Research Institute Group, Beijing 100081, China
2. Advanced Technology & Materials Co. Ltd. , Beijing 100081, China
Cite this article: 

PAN Yun, LIU Tiancheng, LI Guangmin, DAI Baiyang, LV Na, ZHANG Wei, TANG Dongdong. Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy. Chinese Journal of Materials Research, 2020, 34(10): 753-760.

Download:  HTML  PDF(7424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The samples of Fe74.1Cu1Nb3Si15B6.9 (atomic fraction, %) nanocrystalline alloy were subjected to continuous tension annealing treatment, while the effect of the continuous tension annealing induced-anisotropy on their structure and magnetic properties was investigated. The results show that the induced anisotropy constant (Ku) and annealing tension (σ) fit linear relationship in the presence of tensile stress. The effective permeability (μe) at test points f=5 kHz and H=3 A/m first increased and then decreased with the increase of annealing tension. The increase of annealing tension decelerate the process of effective permeability (μe) attenuation, which can remain constant over a wide range of magnetic field and frequency. Compared with other samples, the effective permeability (μe) of the alloy is nearly 800 in the testing range of 0~800 A/m (magnetic field) and 1 k~1 MHz (frequency) when tensile stress is 67 MPa. That show the tension annealed alloy has an excellent constant permeable property. Otherwise, with the increase of annealing tension the unit mass loss of the alloy decreases. When tensile stress is 67 MPa the unit mass loss of the alloy approximates 68 W/kg (testing condition: Bm=300 mT, f =100 kHz), which reduces nearly 67% compared with the absence of annealing tension. Besides, the 180° stripe magnetic domain observed by magneto-optical Kerr microscopy is perpendicular to the tensile stress on the alloy. The increase of tensile stress leads to decrease of the width of domain structures in the alloy and tends to comparable. When tensile stress is 67 MPa the width of domain structures is about 85 μm.

Key words:  metallic materials      magnetic properties      tensile annealing      induced anisotropy     
Received:  24 April 2020     
ZTFLH:  TG156.21  
Fund: National Key Research and Development Project of China(2016YFB0300500)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.137     OR     https://www.cjmr.org/EN/Y2020/V34/I10/753

Fig.1  Schematic representation of apparatus for continuous stress-annealing
Fig.2  XRD patterns (a) and relationship between grain size (b) and the unit mass of loss (Pm) and temperature (c) of alloy continuously annealed at different temperatures
Fig.3  Effective permeability (μe) of alloy annealed at continuous tensile stress (a) μe-H; (b) μe-f
Fig.4  Curves of unit mass of loss (Pm) with tensile stress of alloy (a) and dynamic hysteresis loops of alloy (b)
Fig.5  DC hysteresis loops obtained after different tensile stress annealing (a) and curve of anisotropy field with tensile stress annealing (b)
Fig.6  Domain patterns of alloy annealed at different tensile stress (a) σ<2 MPa; (b) σ=8 MPa; (c) σ=32 MPa; (d) σ=67 MPa
σ/MPanΔd (dmax-dmin)/μm
<29210
810214
3219107
672236
Table 1  Amount and width of domain structure with temperature of alloy annealed at different tensile stress
[1] Yao K F, Shi L X, Chen S Q, et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys [J]. Acta Phys. Sin., 2018, 67(1): 8
姚可夫, 施凌翔, 陈双琴等. 铁基软磁非晶/纳米晶合金研究进展及应用前景 [J]. 物理学报, 2018, 67(1): 8
[2] Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
[3] Lashgari H R, Chu D, Xie S S, et al. Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study [J]. J. Non-Cryst. Solids, 2014, 391: 61
[4] Bolyachkin A S, Komogortsev S V. Power-law behavior of coercivity in nanocrystalline magnetic alloys with grain-size distribution [J]. Scr. Mater., 2018, 152: 55
[5] Gheiratmand T, Madaah Hosseini H R. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements [J]. J. Magn. Magn. Mater., 2016, 408: 177
[6] Wu X R, Li D R, Li Z, et al. Amorphous FeNiCoCuSiBCr alloys with superior direct current tolerant characteristics [J]. J. Iron Steel Res. Int., 2015, 22(02): 145
[7] Lukshina V A, Dmitrieva N V, Volkova E G, et al. Magnetic properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy nanocrystallized in the presence of tensile stresses[J]. Phys. Met. Metallogr., 2019, 120(4): 320
[8] Varga L K, Kovacs G. Effect of transversal applied bias field on the longitudinal soft magnetic properties of nanocrystalline finemet cores [J]. IEEE Trans. Magn., 2012, 48(4): 1360
[9] Jiang M F, Chen W Z. Research on constant permeability property of annealed F-Si-B amorphous alloy [J]. Heat Treatment of Metals, 2010, 35(12): 116
姜敏凤, 陈文智. 退火态Fe-Si-B非晶合金恒导磁性能研究 [J].金属热处理, 2010, 35(12): 116
[10] Herzer G, Budinsky V, Polak C. Magnetic properties of FeCuNbSiB nanocrystallized by flash annealing under high tensile stress [J]. Phys. Status Solidi B-Basic Solid State Phys., 2011, 248(10): 2382-2388
[11] Ohnuma M, Herzer G, Kozikowski P, et al. Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy [J]. Acta Mater., 2012, 60(3): 1278
[12] Nutor R K, Xu X J, Fan X Z, et al. Effects of applying tensile stress during annealing on the GMI and induced anisotropy of Fe-Cu-Nb-Si-B alloys [J]. J. Magn. Magn. Mater., 2019, 471:544
[13] Nutor R K, Fan X Z, He X W, et al. Formation mechanism of stress-induced anisotropy in stress-annealed Fe-based nanocrystalline ribbon alloys[J]. J. Alloy. Compd., 2019, 774: 1243
[14] Fan X Z, He X W, Nutor R K, et al. Effect of stress on crystallization behavior in a Fe-based amorphous ribbon: An in situ synchrotron radiation X-ray diffraction study [J]. J. Magn. Magn. Mater., 2019, 469: 349
doi: 10.1016/j.jmmm.2018.08.078
[15] Yanai T, Shimada A, Takahashi K, et al. Magnetic properties of Fe-based ribbons and toroidal cores prepared by continuous Joule heating under tensile stress [J]. IEEE Trans. Magn., 2006, 42(10): 2781
[16] Ohnuma M, Herzer G, Kozikowski P, et al. Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy [J]. Acta Mater., 2012, 60: 1278
[17] Liu G, Sun L P, Wang X G, et al. Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909
刘刚, 孙立鹏, 王雪刚等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909
[18] Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials [J]. Acta Mater., 2013, 61(3): 718
[19] Wang Z, He K Y. Isothermal aging of permeability of amorphous Fe-Ni-Si-B alloys [J]. Acta Phys. Sin., 1992, 41(10): 1694
王治, 何开元. Fe-Ni-Si-B非晶合金磁导率的等温时效 [J]. 物理学报, 1992, 41(10): 1694
[20] Saito K, Park H S, Shindo D, et al. Magnetic domain structure in Fe78.8-xCoxCu0.6Nb2.6Si9B9 nanocrystalline alloys studied by Lorentz microscopy [J]. J. Magn. Magn. Mater., 2006, 305(2): 304
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!