Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 737-743    DOI: 10.11901/1005.3093.2020.165
ARTICLES Current Issue | Archive | Adv Search |
Precipitation of Al3(Scx ,Ti1-x) Particles in Al-Mg-Sc-Ti Alloy
CHEN Xianming1(), PAN Qinglin2, FAN Yingying1
1. School of Electronic and Electrical Engineering, Zhaoqing University, Zhaoqing 526061, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
Cite this article: 

CHEN Xianming, PAN Qinglin, FAN Yingying. Precipitation of Al3(Scx ,Ti1-x) Particles in Al-Mg-Sc-Ti Alloy. Chinese Journal of Materials Research, 2020, 34(10): 737-743.

Download:  HTML  PDF(11121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cast ingot of Al-5.5Mg-0.25Sc-0.04Ti alloy was prepared by chill casting, and of which the hardness change with time at different annealing temperatures was assessed by hard- meter. While the morphology and formation process of the precipitates Al3(Scx,Ti1-x) of the alloy were investigated by means of metallographic microscopy (OM) and transmission electron microscopy (TEM). The results show that Sc and Ti atoms mainly exist as solid-solute in the α-Al matrix when the alloy was made by chill casting, while in such case, precipitates Al3(Scx,Ti1-x) could hardly be observed by electron microscopy. Annealing at lower temperatures (below 250℃) the hardness of as-cast alloy increases slowly, and the hardness peak appears only after a long annealing time. Annealing at higher temperatures (above 350℃) the hardness increases very quickly, and the hardness peak of the alloy appears quickly, but when the hardness peak appears the hardness will decrease greatly as the annealing continues. Among others, the alloy presents the highest thermal stabilitywhen annealing at 300℃. The changes in hardness are closely related to the secondary precipitates of Al3(Scx,Ti1-x). If the annealing temperature is lower, the precipitates of Al3(Scx,Ti1-x) is incomplete and their size is smaller, so the pinning effect on grain boundary, subgrain boundary and dislocation is weaker. But when the annealing temperature is higher, the coarsening of precipitates of Al3(Scx,Ti1-x) will occur, it results in poor alloy properties.

Key words:  Non-ferrous metals and alloys      Al-Mg-Sc-Ti alloy      chill casting      primary/secondary Al3(Scx,Ti1-x) particle      aluminum alloy with scandium      precipitation behavior     
Received:  18 May 2020     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51402258)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.165     OR     https://www.cjmr.org/EN/Y2020/V34/I10/737

AlloyMgScTiAl
Al-Mg-Sc-Ti5.50.250.04Bal.
Table 1  Content of the alloy (mass fraction, %)
Fig.1  Image of as-cast alloy and annealed state alloy (a) OM image of as cast alloys without annealing; (b) OM image of as cast alloy with annealing for 20 h at 400℃; (c) TEM image of as cast alloys without annealing; (d) SAD, B=[011]; (e) OM image of as cast alloys without annealing (Iron mold casting and air cooling)
Fig.2  Hardness curves of Al-Mg-Sc-Ti alloys after annealing at different temperatures
Fig.3  TEM images and energy spectrum of Al-Mg-Sc-Ti alloys after annealing at different temperatures (a) TEM image annealing for 20 h at 200℃; (b) HRTEM image of the particle in (a); (c) TEM image annealing for 20 h at 300℃; (d) HRTEM image of the particle in (c); (e) TEM image annealing for 20 h at 400℃; (f) HRTEM image of the particle in (e); (g) Amplified image of the particle annealing for 20 h at 400℃; (h) EDS of ‘A’ region indicated by the arrow in (g)
MaterialMelting point/℃Crystal structureLattice constant/nmMismatch/%
Al660FCC0.405
Al3Sc1320Ll20.41031.5
Al3Ti1377D022a=0.3875, c=0.86084.,3
Al3(Ti,Sc)1559Ll20.407010.5
Table 2  Lattice constant and mismatch of Al3Sc/Al3Ti/Al3(Ti,Sc) and Al
Fig.4  Relationship between yield strength increment of precipitated phase and particle radius
[1] Xu G F, Peng X Y, Duan Y L, et al. Research advance on new Al-Mg-Sc-Zr and Al-Zn-Mg-Sc-Zr alloys [J]. Chin. J. Nonferrous Met., 2016, 26(8): 1577
徐国富, 彭小燕, 段雨露等. 新型Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr合金的研究进展 [J]. 中国有色金属学报, 2016, 26(8): 1577
[2] Zhou M, Gan P Y, Deng H H, et al. Research status and prospect of Sc microalloying aluminum alloys [J]. Mater. China, 2018, 37(2): 154
周民, 甘培原, 邓鸿华等. 含钪微合金化铝合金研究现状及发展趋势 [J]. 中国材料进展, 2018, 37(2): 154
[3] Du C H, Yan F, Wang Z T. Aluminum scandium alloy [J]. Light Alloy Fabrication Technol., 2013, 40(8): 11
杜传慧, 苑飞, 王祝堂. Al-Sc合金 [J]. 轻合金加工技术, 2013, 40(8): 11
[4] Xu P, Jiang F, Meng S, et al. Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy variable polarity plasma arc welding joint [J]. J. Mate. Eng. Perform., 2018, 27(9): 4783
[5] Jiang S Y,Wang R H.Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354
doi: 10.1016/j.jmst.2019.03.011
[6] Liu D Y,Wang J X, Li J F. Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition [J]. Chin. J. Nonferrous Met., 2018, 28(11): 2151
doi: 10.1016/S1003-6326(18)64860-5
[7] Peng Z W, Pan Q L, Cai S, et al. Effect of different aging processes on the corrosion behavior of new Al-Cu-Li-Zr-Sc alloys [J]. Mater. Corros., 2019, 70(12): 2266
[8] Wang H, Huang H, Nie Z R, et al. Process and microstructure of Al-6Mg-0.8Zn-0.5Mn-0.2Zr-0.2Er alloy with high strength and high damage tolerance [J]. Rare Met. Mater. Eng., 2016, 45(6): 1534
王欢, 黄晖, 聂祚仁等. Al-6Mg-0.8Zn-0.5Mn-0.2Zr-0.2Er合金高强耐损伤工艺与微观组织研究 [J]. 稀有金属材料与工程, 2016, 45(6): 1534
[9] Wu H, Wen S P, Lu J T, et al. Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization [J]. Trans. Nonferrous Met. Soc. China, 2017, 27(7): 1476
doi: 10.1016/S1003-6326(17)60168-7
[10] Feng J, Ye B, Zuo L J, et al. Effects of Zr, Ti and Sc additions on the microstructure and mechanical properties of Al-0.4Cu-0.14Si-0.05Mg-0.2Fe alloys [J]. J. Mater. Sci. Technol., 2018, 34(12): 2316
doi: 10.1016/j.jmst.2018.05.011
[11] Lv F Y, Yang C G, Huang Z B, et al. Study on remelting microstructure and mechanical properties of Al-4Mg-0.15Ti-0.15Sc-0.15Zr alloy [J]. Hot Working Technol., 2017, 46(5): 29
吕飞阅, 杨成刚, 黄忠宝等. Al-4Mg-0.15Ti-0.15Sc-0.15Zr合金的重熔组织和力学性能研究 [J]. 热加工工艺, 2017, 46(5): 29
[12] Zhou Z Y, Wu B, Zheng X Q, et al. First-principles calculations of ordering behavior and mechanical properties of Al3(Sc0.75M0.25)(M=Ti, Y, Zr and Hf) intermetallics [J]. Rare Met. Mater. Eng., 2019, 48(3): 879
周泽友, 吴波, 郑小青等. Al3(Sc0.75M0.25)(M=Ti, Y, Zr, Hf)金属间化合物有序化行为和力学性能的第一性原理计算 [J]. 稀有金属材料与工程, 2019, 48(3): 879
[13] Li S L, Pan Q L, Chen X M. Effect of Sc and Ti additions on microstructures and tensile properties of Al - Mg alloys [J]. Ordnance Mater.Sci. Eng., 2003, 26(1): 11
李绍禄, 潘青林, 陈显明. Sc和Ti复合微合金化对Al-Mg合金组织与性能的影响 [J]. 兵器材料科学与工程, 2003, 26(1): 11
[14] Wang X, Chen G Q, Li B, et al. Effect of minor Sc, Zr and Ti Co-addition on microstructure and properties of Al-Mg alloys [J]. Rare Met. Mater. Eng., 2010, 39(4): 719
王旭, 陈国钦, 李冰等. 复合添加Sc、Zr、Ti对Al-Mg合金组织与性能的影响 [J]. 稀有金属材料与工程,2010, 39(4): 719
[15] Zeng F h,Xia C Q, Gu Y. An assessment of Al-Mg-Sc-Zr system in aluminum-rich region [J]. Mater. Review, 2002, 16(6): 16
[16] Schuster J C, Palm M. Reassessment of the Binary Aluminum-Titanium Phase Diagram [J]. J. Phase Equilib. Diff., 2006, 27(3): 255
doi: 10.1361/154770306X109809
[17] Du G, Yang W, Yan D S, et al. Precipitation behaviors of primary phases in Al-Mg-Sc-Zr alloy [J]. Chin. J. Nonferrous Met., 2010, 20(6): 1083
杜刚, 杨文, 闫德胜等.Al-Mg-Sc-Zr 合金中初生相的析出行为 [J]. 中国有色金属学报, 2010, 20(6): 1083
[18] Wang Q, Li Q C, Chang G W. Developing status in quo vadis of quick-solidification [J]. J. Liaoning Instit. 2003, 23(5): 40
王倩, 李青春, 常国威. 快速凝固技术的发展现状与展望 [J]. 辽宁工学院学报, 2003, 23(5): 40
[19] Hughes D A, Kassner M E, Stout M G, et al. Metal forming at the center of excellence for the synthesis and processing of advanced materials [J]. JOM, 1998, 50(6): 16
[20] He Y, Wang Z P, He Y J. Study on formation of fine crystal layer in TIG weld of Al-Li alloy [J]. J. Mater. Eng., 1995, (12): 3
贺勇, 王忠平, 贺运佳. 铝锂合金TIG焊缝中细晶层成因的研究 [J]. 材料工程, 1995, (12): 3
[21] Harada Y, Dunand D C. Creep properties of Al3Sc and Al3(Sc,X) intermetallics [J]. Acta Mater., 2000, 48(13): 3477
doi: 10.1016/S1359-6454(00)00142-7
[22] Li Z M, Jiang H C, Wang Y L, et al. The Precipitation and functional mechanism of Al3(Sc, Zr, Ti) phase in 7N01 aluminum alloy with Sc addition [J]. Mater. China, 2019, 38(8): 787
李召明, 姜海昌, 王昀立等. 含钪7N01铝合金中Al3(Sc, Zr, Ti)相的析出及其作用机制 [J]. 中国材料进展, 2019, 38(8): 787
[1] ZHENG Yaya, LUO Binghui, BAI Zhenhai. Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process[J]. 材料研究学报, 2022, 36(12): 926-932.
No Suggested Reading articles found!