Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 835-844    DOI: 10.11901/1005.3093.2020.187
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of PVDF Based Dielectric Nanocomposites Containing Multi-scale Functional Fillers
CHEN Lin, HUANG Jiao, YAN Lei, GUO Yi, LIN Hong, LIN Hailan, BIAN Jun()
College of Materials Science and Engineering, Xihua University, Chengdu 610039, China
Cite this article: 

CHEN Lin, HUANG Jiao, YAN Lei, GUO Yi, LIN Hong, LIN Hailan, BIAN Jun. Preparation and Properties of PVDF Based Dielectric Nanocomposites Containing Multi-scale Functional Fillers. Chinese Journal of Materials Research, 2020, 34(11): 835-844.

Download:  HTML  PDF(8326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four hybrid BT/MWCNTs nanomaterials (BT-A/MWCNTs-B, where A= 5,10) were prepared by two kinds of acidified multi-wall carbon nanotubes (MWCNTs) with lengths of 10-20nm and 20-40nm respectively and two kinds of hydroxylated barium titanate (BT) with diameters of 50nm and 100nm respectively. The effect of multi-scale dielectric fillers BT-A/MWCNTs-B on the mechanical properties, heat resistance and dielectric properties of nanocomposites was investigated by means of X-ray diffractometer (XRD), infrared spectra (FTIR), differential scanning calorimetry analysis (DSC), scanning electron microscope (SEM), tensile properties and dielectric properties testing. Results show that compared with BT/PVDF and MWCNTs/PVDF nanocomposites, BT-A/MWCNTs-B/PVDF nanocomposites have higher crystallinity and thermal properties. When the content (mass fraction) of BT-10 and MWCNTs-2 was 16% and 5% respectively, the melting temperature of BT-10/MWCNTs-2/PVDF nanocomposites could reach 173.8℃, which was 14.2℃ higher than that of pure PVDF (159.6℃), and the crystallinity could reach 43.1%. The three-phase BT-A/MWCNTs-B/PVDF nanocomposites had better dielectric performance than that of the two-phase nanocomposites. At 100Hz, the dielectric constant of BT-10/MWCNTs-2/PVDF nanocomposites could reach 119, 14 times of that of pure PVDF, and the dielectric loss was only 0.051. The tensile strength and elastic modulus of BT-10/MWCNTs-2/PVDF nanocomposites were up to 57.7 MPa and 1226 MPa, respectively.

Key words:  composite      Polyvinylidene fluoride (PVDF)      Hybrid nanometer packing      Thermal performance      Mechanical properties      Dielectric properties     
Received:  26 May 2020     
ZTFLH:  TQ332  
Fund: Cooperation Project of Chunhui Plan of the Ministry of Education of China(Z2018088);Open Research Project of Comprehensive Health Promotion Center of Xihua University(DJKG2019-002);2020 “Xihua Cup” Innovation and Entrepreneurship Training Program for College Students of Xihua University(2020133);Interface innovation research studio project for College Students of Xihua University(2019-07);Graduate Innovation Fund of Xi-hua University(SA2000002910)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.187     OR     https://www.cjmr.org/EN/Y2020/V34/I11/835

Fig.1  Crystal structure of α-PVDF and β-PVDF
Fig.2  FTIR spectrum of MWCNTs, MWCNTs-COOH, BT, BT-OH and BT/MWCNTs
Fig.3  Schematic representation of chemical interactions in BT-A/MWCNTs-B/PVDF nanocomposites
Fig.4  XRD spectrums of dielectric fillers BT-A/MWCNTs-B (a) and nanocomposites BT-A/MWCNTs-B/PVDF (b)
Fig.5  SEM images of dielectric fillers and BT-A/MWCNTs-B/PVDF nanocomposites (a) dielectric fillers BT-5/MWCNTs-1; (b) dielectric fillers BT-10/MWCNTs-2; (c) nanocomposites BT-5/MWCNTs-1/PVDF; (d) nanocomposites BT-10/MWCNTs-2/PVDF.
Fig.6  Mechanical properties of PVDF-based dielectric nanocomposites

PVDF

/%

BT-5

/%

BT-10

/%

MWCNTs-1

/%

MWCNTs-2

/%

Tensile strength

/MPa

Elastic modulus

/MPa

Elongation at break/%
100000052.2±1.5373±13184±12
98002056.6±2.0475±11129±10
95005057.8±1.1503±1368±9
900010060.2±1.1592±1551±7
880012064.6±1.5654±1854±5
98020054.8±1.8836±21103±6
96040055.6±1.1889±2356±5
94060055.8±2.0968±2235±3
92080056.1±2.11012±1921±3
840160056.3±1.91046±2419±2
680320053.8±2.21009±2710±2
791605052.9±1.9986±2221±3
791600553.2±2.01011±2319±4
790165057.1±1.81200±2123±4
790160557.7±2.11226±2522±2
Table 1  Mechanical property data of PVDF based nanocomposites
PVDF/%BT-5/%BT-10/%MWCNTs-1/%MWCNTs-2/%Dielectric constantDielectric loss
100000080.018
980020100.021
950050170.023
9000100220.039
8800120290.045
98020090.020
960400100.024
940600110.026
920800130.029
8401600230.031
6803200310.041
7916050820.058
7916005850.066
79016501020.049
79016051190.051
Table 2  Dielectric properties of PVDF based nanocomposites
Fig.7  Dielectric properties curve of nanocomposites (a) dielectric constants and dielectric loss of 16%BT-10/PVDF, 5%MWCNTs-1/PVDF and BT-A/MWCNTs-B/PVDF nanocomposites at a frequency of 100Hz and (b) relationship diagram of dielectric constant and frequency of 16%BT-10/PVDF, 5%MWCNTs-1/PVDF and BT-A/MWCNTs-B/PVDF nanocomposites
Fig.8  Theoretical model of BT-A/MWCNTs-b/PVDF nanocomposites (a) BT-5/MWCNTs-1/PVDF,(b) BT-10/MWCNTs-2/PVDF
Fig.9  DSC curves of BT-A/MWCNTs-B/PVDF nanocomposites (a) crystallization curves; (b) melting curves
SampleTcp /℃ΔHc /J·g-1Tmp /℃ΔHm /J·g-1Xc /%
PVDF123.936.59159.629.7628.5
BT-5/MWCNTs-1141.239.11170.632.5439.3
BT-5/MWCNTs-2140.238.27171.833.5540.6
BT-10/MWCNTs-1139.240.87172.334.2141.4
BT-10/MWCNTs-2141.341.60173.834.1041.3
Table 3  DSC test results of BT-A/MWCNTs-B/PVDF nanocomposites
1 Zheng Y, Zhang J, Sun X, et al. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization [J]. Ind. Eng. Chem. Res., 2017, 56(15): 4580
2 Zhou W, Gong Y, Tu L T, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites [J]. J. Alloys. Compd, 2017, 693: 34643
3 Foreman K, Poddar S, Ducharme S, et al. Ferroelectricity and the phase transition in large area evaporated vinylidene fluoride oligomer thin films [J]. J. Appl. Phys., 2017, 121(19): 34102
4 Garciaiglesias M, Waal B, Gorbunov A V, et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers [J]. J. Am. Chem. Soc., 2016, 138(19): 6217
5 Lu, Hongchao, Li Li. Crystalline structure, dielectric, and mechanical properties of simultaneously biaxially stretched polyvinylidene fluoride film [J]. Polym. Adv. Technol., 2018, 29(12): 3056
6 Arjmand M, Sadeghi S, Khajehpour M, et al. Carbon nanotube/graphene nano ribbon/polyvinylidene fluoride hybrid nano-composites: rheological and dielectric properties [J]. J. Phys. Chem. C, 2017, 121(1): 169
7 Luo S, Yu S, Sun R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss [J]. ACS Appl. Mater. Interfaces, 2013, 6(1): 1
8 Yu K, Wang H, Zhou Y, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications [J]. J. Appl. Phys., 2013, 113(3): 4105
9 Zhang L, Gao R, Hu P, et al. Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core-satellite particles [J]. RSC Adv. 2016, 10(05): 2216
10 Wei W, Jun R, Luo H, et al. Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility [J]. Ceram. Int., 2018, 44(05): 5086
11 Keerati M, Prasit T. Improved dielectric properties of poly(vinylidene fluoride) polymer nanocomposites filled with Ag nanoparticles and nickelate ceramic particles [J]. Appl. Surf. Sci., 2019, 481,1160
12 Wang Z, Wang T, Fang M, et al. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites [J]. Compos. Sci. Technol., 2017, 146: 139
13 Jayakumar O D, Abdelhamid E H, Kotari V, et al. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles [J]. Dalton Trans. 2015, 44(36): 15872
14 Fakhri P, Mahmood H, Jaleh B, et al. Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller [J]. Synth. Met.. 2016, 220(8): 653
15 Sharma M, Quamara J K, Gaur A. Behaviour of multiphase PVDF in(1-x) PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties [J]. J. Mater. Sci.-Mater. Electron., 2018, 29(13): 10875
16 Yu K, Wang H, Zhou Y, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications [J]. J. Appl. Phys. 2013, 113(3): 1
17 Silva A B, Arjmand M, Sundararaj U, et al. Novel composites of copper nanowire/PVDF with superior dielectric properties [J]. Polymer, 2014, 55(01): 226
18 Shixin S, Shan X, Shangkun J, et al. A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer [J]. Materials, 2018, 11(3): 347
19 Souliéziakovic C, Nicolaÿ R, Prevoteau A, et al. Dispersible carbon nanotubes. [J]. Chem.-Eur. J., 2014, 20(5): 1210
20 Selvi M, Prabunathan P, Song J K, et al. High dielectric multiwalled carbon nanotube-polybenzoxazine nanocomposites for printed circuit board applications [J]. Appl. Phys. Lett., 2013, 103(15): 539
21 Mizutani K, Kohno H. Multi-walled carbon nanotubes with rectangular or square cross-section [J]. Appl. Phys. Lett., 2016, 108(26): 56
22 Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes [J]. Crit. Rev. Anal. Chem., 2017, 48(2): 2642
23 Bian J, Wang G, Zhou X, et al. Preparation and performance of nanocomposites HDPE toughened-reinforced synergetically with functionalized graphene and carbon nano-tubes [J]. Chinese Journal of Materials Research, 2017, 31(02): 136
卞军, 王刚, 周醒等. 功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(02): 136
24 Lin H L, Shen Y J, Wang Z J, et al. Preparation and properties of per functional graphene/elastomer co-operatively tough polypropylene nanocomposites [J]. Chinese Journal of Materials Research, 2016, 30(5): 393
蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究 [J]. 材料研究学报, 2016, 30(5): 393
25 Kim H, Johnson J, Chavez L A, et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing [J]. Ceram. Int., 2018, 44(1): 1
26 Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J]. Nano Energy, 2016, 30: 407
27 Rath S K, Dubey S, Kumar G S, et al. Multi-walled CNT-induced phase behaviour of poly(vinylidene fluoride) and its electromechanical properties [J]. J. Mater. Sci., 2014, 49(1): 103
28 Mu Y, Li G. Effects of micron Al2O3 filler on flexural strength and high-temperature microwave absorbing properties of SiCf/BN/SiC composites [J]. Chinese Journal of Materials Research, 2019, 33(11): 206
穆阳, 李皓. Al2O3填料对SiCf/BN/SiC复合材料弯曲强度和高温吸波性能的影响 [J]. 材料研究学报, 2019, 33(11): 206
29 Chen W, Nie Y Y, Sun X G, et al. Performance of lithiumion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chinese Journal of Materials Research, 2019, 33(5): 371
陈玮, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33(5): 371
30 Saleh T A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3, or a mixture of HNO3/H2SO4 [J]. Appl. Surf. Sci., 2011, 257(17): 7746
31 Marzieh N, Reza T M, Maryam K, et al. Assessment of the optical and dielectric properties of MWCNTs/BaTiO3 nanocomposite ceramics [J]. Ceram. Int., 2018, 44(11): 235
32 Chang S J, Liao W S, Ciou C J, et al. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability [J]. J. Colloid Interface Sci., 2009, 329(2): 300
33 Ji W B, Chu R Q, Xu Z J, et al. Effect of CeO2-doping on properties of SrNa0.5Bi4.5Ti5O18-based high temperature lead-free piezoelectric ceramics [J]. Chinese Journal of Materials Research, 2015, 29(3): 201
姬万滨, 初瑞清, 徐志军等. CeO2掺杂对SrNa0.5Bi4.5Ti5O18高温无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2015, 29(3): 201
34 Kappadan S, Gebreab T W, Thomas S, et al. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants [J]. Mater. Sci. Semicond. Process, 2016, 51: 42
35 Ke K, Potschke P, Jehnichen D, et al. Achieving beta-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes [J]. Polymer, 2014, 55(2): 611
36 Maity N, Mandal A, Nandi A K. Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties [J]. Polymer, 2015, 65: 154
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[13] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[15] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
No Suggested Reading articles found!