Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 434-442    DOI: 10.11901/1005.3093.2019.501
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt
GUO Tieming1,2(), XU Xiujie1,2, ZHANG Yanwen1,2, SONG Zhitao1,2, DONG Zhilin1,2, JIN Yuhua1,2
1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt. Chinese Journal of Materials Research, 2020, 34(6): 434-442.

Download:  HTML  PDF(2628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of Q345qNH weathering steel and Q345q ordinary bridge steel in a mixed medium of simulated industrial environment solution and deicing salt was investigated by means of wet/dry cyclic accelerated corrosion test, The corrosion kinetics curves of the two steels were studied by weight loss method, and the phase, morphological structure and electrochemical characteristics of the rust layer after corrosion of the two steels for different times were analyzed using XRD, SEM and electrochemical workstation. The results show that the corrosion weight loss of Q345qNH weathering steel is slightly higher than that of Q345q bridge steel before 100 h. However, after 100 h the corrosion mass loss of bridge steel is obviously larger than that of weathering steel. The corrosion products were composed of α-FeOOH, β-FeOOH, γ-FeOOH, Fe2O3, Fe3O4 and FeOCl, but the content of unstable β-FeOOH and FeOCl on Q345q bridge steel was significantly higher than that on Q345qNH weathering steel, thereby, the rust scale on Q345q bridge steel presented lower stability; the free-corrosion potential of the rust layer on the two steels increased with the increasing time, and the free-corrosion potential of Q345qNH weathering steel increased faster than that of Q345q bridge steel, while, their free-corrosion current density showed undulatory attenuation. The protectiveness of the rust layer of weathering steel was better than that of ordinary bridge steel in the later stage of corrosion; the corrosion behavior of the two steels in the mixed medium was affected by the coupling effect of various ions. Due to the existence of unstable corrosion products such as β-FeOOH and FeOCl, the compactness of the rust layer reduced, even so, which still maintained protectiveness to certain extent. In general, the corrosion resistance of Q345qNH weathering bridge steel in the mixed media was better than that of Q345q ordinary bridge steel.

Key words:  material failure and protection      corrosion behavior evaluation      wet and dry cycle      northwest atmospheric environment      bridge steel     
Received:  04 November 2019     
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51865028);Guangdong sailing program to introduce innovative entrepreneurial team of special funding(2015YT02G090)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.501     OR     https://www.cjmr.org/EN/Y2020/V34/I6/434

SteelsCSiMnPSAlNiCrCuVNbFe
Q345qNH0.0760.281.520.0120.0010.0270.360.480.310.0320.0045Bal.
Q345q0.1580.2461.2450.0230.022------Bal.
Table 1  The chemical composition of Q345qNH and Q345q (%, mass fraction)
CorrodentGBpHIngredient
Deicing salt solutionGB/T 19746-20059.3±0.5(52.5 g±0.1 g)NaCl, (0.5 g±0.002 g)Na2SO4, (0.25 g±0.002 g)Na2SO3, (52.5 g±0.1 g)CaCl2·2H2O, (0.1 g±0.002 g)Na2S2O3
NaHSO3 solutionTB/T 2375-934.4-4.80.01 mol/L NaHSO3
Mixed solution4.7±0.5deicing salt solution+0.01 mol/L NaHSO3 solution
Table 2  Compositions of corrosion solutions
Fig.1  Evolution of the corrosion kinetics curves of two steels in mixed media
Fig.2  Fitting curves of corrosion weight loss of two steels (a) Q345qNH, (b) Q345q
Steels1st step2nd step
AnR2AnR2
Q345qNH0.55290.44010.99640.29450.56510.9724
Q345q0.00381.50410.96920.53310.48650.9999
Table 3  Linear fitting results by double log in mixed solution
Fig.3  Macroscopic corrosion morphology of two steels (a) Q345qNH 24 h, (b) Q345qNH 288 h, (c) Q345q 24 h, (d) Q345q 288 h
Fig.4  SEM images of the rust layer surfaces on Q345qNH: after 24 h (b) enlarged after 24 h (c) 288 h (d) magnified view of A
Fig.5  SEM images of the rust layer surfaces on Q345q: (a) after 24 h (b) enlarged after 24 h (c) after 288 h (d) magnified view of B
Fig.6  SEM images of cross-sections of two steels after corrosion for 480 h (a) Q345qNH, (b) Q345q
Fig.7  Relationship between thickness of rust layer and time of two steels
Fig.8  XRD images of two steels after corrosion for 480 h
Fig.9  Curve of β-FeOOH+FeOCl content of two steels at different times
Fig.10  Polarization curves of two rusted steels corroded at different times
SteelsElectrochemical parameter24 h72 h144 h288 h480 h
Q345qNHEcorr/V-0.8909-0.8714-0.7488-0.799-0.6566
Icorr/mA·cm-20.25430.30800.21390.20140.1405
Q345qEcorr/V-0.9321-0.906-0.7891-0.8052-0.7563
Icorr/mA·cm-20.16560.26660.23670.14090.2240
Table 4  Electrochemical parameter of Q345 steel the rust layer after corrosion fore different times
[1] Houska C. Deicing salt-recognizing the corrosion threat [J]. Architecture Technique, 2011, (11): 174
(凯瑟琳·胡斯卡. 认识除冰盐的腐蚀威胁, 合理选用耐腐蚀材料 [J]. 建筑技艺, 2011, (11): 174)
[2] Jang J W, Iwasaki I, Gillis H J, et al. Effect of corrosion-inhibitor-added deicing salts and salt substitutes on reinforcing steels: II. Influence of temperature and oxygen content [J]. Adv. Cem. Based Mater., 1995, 2(4): 152
doi: 10.1016/1065-7355(95)90016-0
[3] Zhang L, Zhao C Y, Wang Z Y, et al. Studies on corrosion behaviors of carbon steel and weathering steel in simulated industrial atmospheric environment [J]. Plating & Finishing, 2015, 37(4): 38
(张琳, 赵春英, 王振尧等. 模拟工业大气环境中碳钢和耐候钢的腐蚀行为研究 [J]. 电镀与精饰, 2015, 37(4): 38)
[4] Zhang Y W, Guo T M, Song Z T, et al. Corrosion behavior of Q345q steel with oxide scale in simulated typical atmospheric environment in northwest China [J]. Chin. J. Mater. Res., 2019, 33(10): 749
doi: 10.11901/1005.3093.2019.088
(张延文, 郭铁明, 宋志涛等. 带氧化皮Q345q钢在模拟西北典型大气环境中的腐蚀行为研究 [J]. 材料研究学报, 2019, 33(10): 749)
doi: 10.11901/1005.3093.2019.088
[5] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 1
(梁彩凤, 候文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25(1): 1)
[6] Pan X X, Jiang H C, Fu H, et al. Investigation on initial-stage corrosion behavior of low alloy high-strength weathering resistant steel in regional climates [J]. Corros. Sci. Prot. Technol., 2017, (04): 28
(潘雪新, 姜海昌, 付鸿等. 区域性气候条件下低合金高强耐候钢的初期腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, (04): 28)
[7] Gao X L, Fu G Q, Zhu M Y, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions [J]. J. Univ. Sci. Technol. B., 2012, (11): 50
(高新亮, 付贵勤, 朱苗勇等. 低合金耐候钢在含氯离子环境中的腐蚀行为 [J]. 北京科技大学学报, 2012, (11): 50)
[8] Lu W Y, Wang Z Y, Yu Q C, et al. Synergic effect of NaHSO3 and NaCl on atmospheric corrosion of Q235 steel [J]. Corros. Sci. Prot. Technol., 2015, (6): 545
(吕旺燕, 王振尧, 于全成等. NaHSO3和NaCl对Q235钢大气腐蚀的协同作用 [J]. 腐蚀科学与防护技术, 2015, (6): 545)
doi: 10.11903/1002.6495.2015.008
[9] Han L H. Corrosion characteristic research of Q235 and B480GNQR steel in typical atmospheric environment [D]. Tianjin: Tianjin University, 2014
(韩连恒. Q235和B480GNQR钢在典型大气环境中的腐蚀行为研究 [D]. 天津: 天津大学, 2014)
[10] Hara S, Miura M, Uchiumi Y, et al. Suppression of deicing salt corrosion of weathering steel bridges by washing [J]. Corros. Sci., 2005, 47(10): 0-2430
[11] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39(4)
(郭铁明, 张延文, 秦俊山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39(4))
[12] Díaz Ivan, Cano H, Fuente D D L, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76(2): 348
doi: 10.1016/j.corsci.2013.06.053
[13] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41(9): 1687
doi: 10.1016/S0010-938X(99)00005-0
[14] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51(5): 0-1006
[15] Wu H Y, Zhang C Y, Wen L, et al. Study on corrosion behavior of V-Ti container weathering steel in a simulated industrial atmosphere environment [A]. Proceedings of the Second Conference on Development and Application of Vanadium Titanium Microalloyed High Strength Steel in 2015 [C]. Sichuan, 2015
(吴红艳, 张程远, 翁镭等. V-Ti集装箱用耐候钢在模拟工业大气环境下耐蚀行为的研究 [A]. 2015第二届钒钛微合金化高强钢开发应用技术交流会会议论文集 [C]. 四川, 2015)
[16] Ke W, Dong J. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metallurgica Sinica, 2011, 46(11): 1365
doi: 10.3724/SP.J.1037.2010.01365
[17] Li Q X, Wang Z Y, Han W, et al. Review on atmospheric corrosion of weathering and carbon steels [J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 394
(李巧霞, 王振尧, 韩薇等. 碳钢和耐候钢的大气腐蚀 [J]. 中国腐蚀与防护学报, 2009, 29(5): 394)
doi: 1005-4537(2009)05-0394-07
[18] Chuang Q, Lian F S, Long H, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
[19] Wu H Y, Du L X, Liu X H, et al. Corrosion behavior of Mn-Cu weathering steel in simulated industrial atmosphere environment [J]. J. Northeast. Univ., 2011, 32(10): 1418
(吴红艳, 杜林秀, 刘相华等. Mn-Cu耐候钢在模拟工业大气环境下的腐蚀行为 [J]. 东北大学学报(自然科学版), 2011, 32(10): 1418)
[20] Long H, Zhang S, Dong J, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2012, 59(none): 0-276
[21] Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014
(陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014)
[22] Yue L J, Wang L M, Pu X Y, et al. Electrochemical characteristics of rust layer on 10PCuRE weathering steel [J]. Chinese Rare Earths, 2005, 26(5): 56
(岳丽杰, 王龙妹, 朴秀玉等. 10PCuRE耐候钢耐蚀锈层的电化学特征 [J]. 稀土, 2005, 26(5): 56)
[23] Jiang S, Chai F, Su H, et al. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution [J]. Corros. Sci., 2017, 123
[24] Hao X C, Su P, Xiao Q, et al. Influence of NaCl concentration on corrosion products of weathering steel [J]. Corros. Prot., 2009, 30(5): 297
(郝献超, 苏鹏, 肖葵等. 不同NaCl浓度对耐候钢腐蚀产物的影响 [J]. 腐蚀与防护, 2009, 30(5): 297)
[25] Shao C J. The corrosion resistance of low carbon bainitic weathering steel in coastal atmosphere and industrial atmosphere [D]. Shenyang: Northeast University, 2010
(邵长静. 低碳贝氏体耐候钢在海岸大气和工业大气环境下的腐蚀行为研究 [D]. 沈阳: 东北大学, 2010)
[26] Sun J L, Zou D, Jin J. et al. Localized corrosion resistance of three commonly-used stainless steels [J] Chin. J. Mater. Res.. 2017, 31(09): 665
(孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J].材料研究学报, 2017, 31(09): 665)
[27] Asami K, Kikuchi M. In-Depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45(11): 2671
doi: 10.1016/S0010-938X(03)00070-2
[28] Chen W, Hao L, Dong J, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83(7): 155
doi: 10.1016/j.corsci.2014.02.010
[29] Nishimura T, Noda K, Kodama T, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion -Houston Tx-, 2000, 56(9): 935
[30] Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of Aer Met100 steel in salt spray environment under Cl- [J]. Equipment Environmental Engineering, 2019, 10(16): 88
(钱昂, 杨晓华, 金平等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 10(16): 88)
[31] Wang Z, Liu J, Wu L, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67(none): 1
doi: 10.1016/j.corsci.2012.09.020
[32] Ohtsuka T, Komatsu T. Enhancement of electric conductivity of the rust layer by adsorption of water [J]. Corros. Sci., 2005, 47(10): 2571
doi: 10.1016/j.corsci.2004.10.010
[33] Ma Y, Li Y, Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51(5): 0-1006
[34] Jia Z, Cuiwei D U, Liu Z, et al. Effect of calcium ions on CO2 corrosion of 3Cr low-alloy steel [J]. Acta Metallurgica Sinica, 2011, 24(5): 373
[35] Zhang B, Ma X L. TEM study on the pitting initiation [J]. Chinese Journal of material progress, 2018, 37(11): 30
(张波, 马秀良. 点蚀形核机制的透射电子显微学研究 [J]. 中国材料进展, 2018, 37(11): 30)
[36] Chen W J, Chen Y Q, Pan G. Corrosion evolution characteristics of Q235B steel in an O3/Cl- containing atmosphere [J]. Corros. Sci. Prot. Technol., 2019, 31(01): 10
(陈文娟, 陈翌庆, 潘刚. O3/Cl-复合大气环境中Q235B钢的腐蚀演化特性 [J]. 腐蚀科学与防护技术, 2019, 31(01): 10)
[37] Yan B H, Wang X J, Zhao N, et al. Corrosion behaviors of carbon steel and weathering steel in Nanjing industrial atmosphere [A]. The Fifth Marine Materials and Corrosion Protection Conference and New Marine Materials and Protection Technology Exhibition in 2018 [C], Beijing, 2018
(闫秉昊, 王孝建, 赵楠等. 碳钢和耐候钢在南京工业大气环境中的腐蚀行为 [A]. 2018第五届海洋材料与腐蚀防护大会暨海洋新材料及防护新技术展览会 [C]. 北京, 2018)
[38] Wang J J, Guo X D, Zheng W L, et al. Analysis of the corrosion rust on weathering steel and carbon steel exposed in marine atmosphere for three years [J]. Corros. Prot., 2002, (07): 6
(王建军, 郭小丹, 郑文龙等. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, (07): 6)
[39] Li J Z. Reasearch on corrosion resistance and rust stability of uncoating weathering bridge steel [D]. Qinhuangdao: Tianjin University, 2016
(历纪正. 免涂装耐候桥梁钢的耐蚀性能及锈层稳定性研究 [D]. 秦皇岛: 燕山大学, 2016)
[40] Cheng Q, Tao B, Song L, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil [J]. Corros. Sci., 2016: S0010938X16301962
[41] Yang Y, Hou H X, Zhang Z, et al. Corrosion behavior of weathering bridge steel Q500qENH in simulated industrial atmospheric environment [J]. Corros. Prot., 2017, 4
(杨颖, 侯华兴, 张哲. Q500qENH耐候桥梁钢在模拟工业大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 4)
[42] Zhang Q C, Wang J J, Wu J S, et al. Effort of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, (02): 193
(张全成, 王建军, 吴建生等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, (02): 193)
[1] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[2] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[3] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[4] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[5] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[6] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[7] JIA Zhijun DU Cuiwei LIU Zhiyong GAO Jin LI Xiaogang. Effect of pH on the Corrosion and Electrochemical Behavior of 3Cr Steel in CO2 Saturated NaCl Solution[J]. 材料研究学报, 2011, 25(1): 39-44.
[8] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
No Suggested Reading articles found!