Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 191-197    DOI: 10.11901/1005.3093.2019.431
ARTICLES Current Issue | Archive | Adv Search |
Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries
ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao()
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries. Chinese Journal of Materials Research, 2020, 34(3): 191-197.

Download:  HTML  PDF(3434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon-constraint NiS2 nanomaterials (NiS2@C) with core-shell structure were successfully synthesized by a combination method of arc evaporation and solid-state vulcanization. Characterization results of X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy show that there existed rich defects in the carbon shell. The thickness of the carbon shell was 4 nm, and the diameter of the NiS2 core was 28 nm. The electrochemical performance of NiS2@C electrode was measured as the cathode materials for Na-S batteries. The Coulombic efficiency of NiS2@C electrode remained above 90% after four cycles at a current density of 100 mA·g-1, and the reversible specific capacity of 106.8 mAh·g-1 remained after 500 cycles, which showed high cyclic stability. The electrochemical impedance analysis reveals that the electrode reactions were accelerated and the dynamic equilibrium of ion migration at the interface was maintained due to its good electronic conductivity and excellent structural stability by the constraint of the external carbon layer.

Key words:  inorganic nonmetallic materials      Na-S battery      cathode material      arc evaporation method      carbon-constraint nanostructure      sodium-ion storage     
Received:  03 September 2019     
ZTFLH:  O646,TM912.9  
Fund: National Natural Science Foundation of China(51171033);Fundamental Research Funds for the Central Universities(DUT19LAB29)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.431     OR     https://www.cjmr.org/EN/Y2020/V34/I3/191

Fig.1  XRD diagrams of vulcanized products of Ni precursor at different temperatures (a), XRD diagrams of precursors Ni, Ni@C and electrode active materials NiS2 and NiS2@C (b) and Raman diagram of NiS2@C nanomaterials (c)
Fig.2  TEM images of Ni@C (a, a') and NiS2@C (b, b') at different magnification
Fig.3  Cyclic voltammogram of NiS2 (a) and NiS2@C (b) cathode materials
Fig.4  Cyclic performance of NiS2 and NiS2@C cathode materials at current density of 100 mA·g-1 (a) and charge and discharge curves of NiS2@C cathode material at current density of 100 mA·g-1 (b)
Fig.5  Nyquist curve (a, c), equivalent circuit model (b, d) of NiS2 and NiS2@C cathode materials with different cycles
SampleCPE1/FCPE2/FR2/Ω·cm2R3/Ω·cm2IF/mA·cm-2
NiS2 initial4.34×10-5--189.50--2.24×10-5
1st cycle7.41×10-49.18×10-567.047.316.34×10-5
3rd cycle8.51×10-54.71×10-539.927.191.06×10-4
5th cycle7.59×10-53.43×10-524.387.031.74×10-4
10th cycle5.05×10-52.79×10-523.156.221.84×10-4
Table 1  Equivalent circuit parameters of NiS2 cathode materials
SampleCPE1/FCPE2/FCPE3/FR2/Ω·cm2R3/Ω·cm2IF/mA·cm-2
NiS2@C initial5.14×10-51.06×10-4-392.30283.001.08×10-5
5th cycle4.07×10-59.16×10-47.75×10-5108.90128.103.90×10-5
10th cycle3.78×10-57.96×10-55.44×10-511.0475.703.85×10-4
20th cycle1.40×10-56.13×10-52.40×10-56.7971.216.26×10-4
50th cycle1.26×10-52.42×10-51.71×10-55.433.507.82×10-4
Table 2  Equivalent circuit parameters of NiS2@C cathode materials
[1] Xin S, Yin Y X, Guo Y G, et al. A high-energy room-temperature sodium-sulfur battery [J]. Adv. Mater., 2014, 26: 1261
[2] Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature [J]. Nano Lett., 2013, 13: 4532
[3] Yang F C, Mousavie S M A, Oh T K, et al. Sodium-sulfur flow battery for low-cost electrical storage [J]. Adv. Energy Mater., 2018, 8: 1701991
[4] Okuyama R, Nakashima H, Sano T, et al. The effect of metal sulfides in the cathode on Na/S battery performance [J]. J. Power Sources, 2001, 93: 50
[5] Wang C L, Wang H, Hu X F, et al. Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries [J]. Adv. Energy Mater., 2019, 9: 1803251
[6] Lu Y, Li X N, Liang J W, et al. A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries [J]. Nanoscale, 2016, 8: 17616
[7] Wang H Q, Li S, Li D, et al. TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries [J]. Energy, 2014, 75: 597
[8] Du W Y, Xu Q J, Zhang Y Q, et al. Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries [J]. Mater. Lett., 2018, 221: 66
[9] Park C W, Ahn J H, Ryu H S, et al. Room-temperature solid-state sodium/sulfur battery [J]. Electrochem. Solid-State Lett., 2006, 9: A123
[10] Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte [J]. J. Power Sources, 2011, 196: 5186
[11] Yang T T, Gao W, Guo B S, et al. A railway-like network electrode design for room temperature Na-S battery [J]. J. Mater. Chem., 2019, 7A: 150
[12] Yu X W, Manthiram A. Capacity enhancement and discharge me-chanisms of room-temperature sodium-sulfur batteries [J]. Chem. Electro. Chem, 2014, 1: 1275
[13] Tanibata N, Tsukasaki H, Deguchi M, et al. Characterization of sulfur nanocomposite electrodes containing phosphorus sul?de for high-capacity all-solid-state Na/S batteries [J]. Solid State Ionics, 2017, 311: 6
[14] Gu Z Y, Gao S, Huang H, et al. Electrochemical behavior of MWCNT-constraint SnS2 nanostructure as the anode for lithium-ion batteries [J]. Acta Phys. Chim. Sin., 2017, 33: 1197
[14] 谷泽宇, 高嵩, 黄昊等. 多壁纳米碳管约束二硫化锡作为锂离子电池负极的电化学行为 [J]. 物理化学学报, 2017, 33: 1197
[15] Wang T S, Hu P, Zhang C J, et al. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery [J]. ACS Appl. Mater. Interfaces, 2016, 8: 7811
[16] Bi R, Zeng C, Haung H W, et al. Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage [J]. J. Mater. Chem., 2018, 6A: 14077
[17] Yu X W, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysul?de batteries [J]. J. Phys. Chem. Lett., 2015, 5: 1943
[18] Kim L, Kim C, Kim H, et al. Initial discharge behavior of an ultra high loading 3D sulfur cathode for a room-temperature Na/S battery [J]. J. Nanosci. Nanotechnol., 2018, 18: 6524
[19] Chen Y M, Liang W F, Li S, et al. Nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur battery [J]. J. Mater. Chem., 2016, 4A: 12471
[20] Yu X W, Manthiram A. Ambient-temperature sodium-sulfur batteries with a sodiated na?on membrane and a carbon nano?ber-activated carbon composite electrode [J]. Adv. Energy Mater., 2015, 5: 1500350
[21] Kim J S, Ahn H J, Ryu H S, et al. The discharge properties of Na/Ni3S2 cell at ambient temperature [J]. J. Power Sources, 2008, 178: 852
[22] Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J]. Adv. Funct. Mater., 2008, 18: 3941
[23] Kim J S, Ahn H J, Kim I P, et al. The short-term cycling properties of Na/PVDF/S battery at ambient temperature [J]. J. Solid State Electrochem., 2008, 12: 861
[24] Bauer I, Kohl M, Althues H, et al. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J]. Chem. Commun., 2014, 50: 3208
[25] Wenzel S, Metelmann H, Rai? C, et al. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte [J]. J. Power Sources, 2013, 243: 758
[26] Jin X Z, Huang H, Wu A M, et al. Inverse capacity growth and pocket effect in SnS2 semi-filled carbon nanotube anode [J]. ACS Nano, 2018, 12: 8037
[27] Huang H, Gao S, Wu A M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2017, 31: 74
[28] Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodiumion batteries [J]. Adv. Energy Mater., 2014, 4: 1301584
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[3] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[4] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[5] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[6] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[7] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[9] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[10] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[11] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[12] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
[13] Jiangpei XUE,Chunhai JIANG,Zhimin ZOU,Bingxuan PAN. Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations[J]. 材料研究学报, 2019, 33(3): 170-176.
[14] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
[15] Shengwen ZHONG, Huajun ZHANG, Wenli YAO, Qian ZHANG, Yukun FU, Xiaodong TANG. Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials[J]. 材料研究学报, 2018, 32(7): 487-494.
No Suggested Reading articles found!