Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 176-182    DOI: 10.11901/1005.3093.2019.373
ARTICLES Current Issue | Archive | Adv Search |
Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance
WANG Shiqi1,HUO Wenyi1,XU Zhengchao2,ZHANG Xuhai1,ZHOU Xuefeng1,FANG Feng1()
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2. Zhangjiagang Green Tech Environmental Protection Equipment Co. , LTD. , Suzhou 215625, China
Cite this article: 

WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance. Chinese Journal of Materials Research, 2020, 34(3): 176-182.

Download:  HTML  PDF(3233KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Films of Ti-Co alloy were firstly prepared on ITO glass by magnetron sputtering and then were anodized in electrolyte of ethylene glycol + DI water + NH4F to produce films of the Co-doped TiO2 nanotube arrays. The effect of Co doping on the morphology, microstructure, optical and photocatalytic reduction performance under visible light was assessed for the acquired films. The results show that the films of Co-doped TiO2 nanotube arrays are composed of anatase, the same as the plain TiO2, while the preferred orientation changed to (001) from (101) of the plain TiO2. The incorporation of Co improved the absorption of visible light and promoted the separation of photo-generated electro-hole pairs simultaneously. Compared to the film of plain TiO2, the ones of Co-doped TiO2 nanotube arrays exhibit better photocatalytic reduction performance. The film with 0.19%Co (atomic fraction) shows the best photocatalytic reduction efficiency, it is 98.4% after visible light irradiation for 150 min.

Key words:  inorganic non-metallic materials      magnetron sputtering      anodizing      photocatalytic reduction      titanium dioxide      thin films     
Received:  29 July 2019     
ZTFLH:  TB43  
Fund: the 333 Projects of Jiangsu Province, China(BRA2018045);Natural Science Foundation of Jiangsu Province, China(BK20180264)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.373     OR     https://www.cjmr.org/EN/Y2020/V34/I3/176

Base pressure

/Pa

Sputtering pressure

/Pa

N2 flow rate

/sccm

Sputtering power

/W

Deposition time

/h

8×10-40.5301001
Table1  Preparation parameters of Ti-Co alloy films
Fig.1  Morphology of the samples with different Co doping content (a) 0; (b) 0.10%; (c) 0.19%; (d) 0.70%
Fig.2  XRD patterns of Co0-TONT, Co1-TONT, Co2-TONT and Co4-TONT
Sample

Co content

/%, atomic fraction

2θ, anatase (004)

/(°)

d-spacing, anatase (004)

/nm

Crystallite size, anatase (004)

/nm

I(004)/I(101)
Co0-TONT037.9670.236832.60.7
Co1-TONT0.1037.8880.237244.838.4
Co2-TONT0.1937.8840.237341.822.7
Co4-TONT0.737.8670.237437.317.1
Table 2  Composition and structural parameters of Co0-TONT, Co1-TONT, Co2-TONT and Co4-TONT
Fig.3  Raman spectra (a) of films with various amount of Co and Eg Raman spectra (b) active modes of Co0-TNOT, Co1-TNOT, Co2-TNOT, Co4-TNOT, at a higher magnification
Fig.4  UV-vis absorption spectra (a) of the Co0-TNOT, Co1-TNOT, Co2-TNOT, Co4-TNOT and Tauc Plots ((F(R))0.5vs) (b) of Co0-TNOT and Co4-TNOT
Fig.5  PL spectra of the Co0-TNOT, Co1-TNOT, Co2-TNOT and Co4-TNOT
Fig.6  Cr (VI) residue percentage versus visible-light illumination time for the Co0-TNOT, Co1-TNOT, Co2-TNOT and Co4-TNOT
Fig.7  XPS Co 2p spectra of the Co2-TONT
[1] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37
[2] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Adv. Mater., 2012, 43(10): 229
[3] Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Cheminform, 2007, 107(7): 2891
[4] Wang Y, Feng C, Zhang M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen [J]. Appl. Catal. B-Environ., 2010, 100(1-2): 84
[5] Mor G K, Prakasam H E, Varghese O K, et al. Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis [J]. Nano. Lett., 2007, 7(8): 2356
[6] Ganesh I, Gupta A K, Kumar P P, et al. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications [J]. Mater. Chem. Phys., 2012, 135 (1): 220
[7] Hidalgo M C, Maicu M, Nav?o J A, et al. Effect of Sulfate Pretreatment on Gold-Modified TiO2 for Photocatalytic Applications [J]. J. Phys. Chem. C., 2009, 113 (29): 12840
[8] Pugazhenthiran N, Murugesan S, Anandan S. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium [J]. J. Hazard. Mater., 2013, 263: 541
[9] Yu H, Wang X, Sun H, et al. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film [J]. J. Hazard. Mater., 2010, 184 (1-3): 753
[10] Liu Y, Wang Z, Huang W. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts [J]. Appl. Surf. Sci., 2016, 389: 760
[11] Huang C, Lv Y, Zhou Q, et al. Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group [J]. Ceram. Int., 2014, 40(5): 7093
[12] Ong K G, Varghese O K, Mor G K, et al. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J]. Sol. Energ. Mat. Sol. C., 2007, 91(4): 250
[13] Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano. Lett., 2005, 5 (1): 191
[14] Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water. Res., 2010, 44(10): 2997
[15] Li S, Cai J, Wu X, et al. TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol [J]. J. Hazard. Mater., 2018, 346
[16] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. J. Environ. Manage., 2011, 92(3): 407
[17] Yousefi S M, Shemirani F. Selective and sensitive speciation analysis of Cr (VI) and Cr (III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction [J]. J. Hazard. Mater., 2013, 254-255: 134
[18] Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays [J]. Rsc. Adv., 2014, 4(33): 17300
[19] Sadanandam G, Lalitha K, Kumari V D, et al. Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation [J]. Int. J. Hydrogen Energ., 2013, 38(23): 9655
[20] Janio V, Fernando B, Guaglianoni W C, et al. Cobalt-doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Water Splitting Applications [J]. Appl. Surf. Sci., 2018:S0169433218325091
[21] Chanda A, Rout K, Vasundhara M, et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles [J]. Rsc. Adv., 2018, 8(20): 10939
[22] Pan D, Huang H, Wang X, et al. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors [J]. J. Mater. Chem. A., 2014, 2(29): 11454
[23] Zhao Z, Sun Z, Zhao H, et al. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets [J]. J. Mater. Chem., 2012, 22(41): 21965
[24] Aijo J K, Naduvath J, Mallick S, et al. A novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes [J]. Nanoscale, 2015, 7(48): 20386
[25] Choi H C, Jung Y M, Kim S B. Size effects in the Raman spectra of TiO2 nanoparticles [J]. Vib. Spectrosc., 2005, 37(1): 33
[26] Zhang Y, Farsinezhad S, Wiltshire B D, et al. Optical Anisotropy in Vertically Oriented TiO2 Nanotube Arrays [J]. Nanotechnology, 2017, 28(37)
[27] Zhang W F, He Y L, Zhang M S, et al. Raman Scattering Study on Anatase TiO2 Nanocrystals [J]. J. Phys. D. Appl. Phys., 2000, 33 (8): 912
[28] Yu J, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays [J]. J. Mater. Chem. A., 2015, (44): 22218
[29] Dhanalakshmi J, Iyyapushpam S, Nishanthi S T, et al. Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra [J]. Adv. Nat. Sci-Nanosci., 2017, 8(1): 015015
[30] Li D Z, Zhen Y, Fu X Z. Photoluminescence of nano-TiO2 [J]. Chin. J. Mater. Res., 2000, 14(6): 639
[30] 李旦振; 郑宜; 付贤智. 纳米二氧化钛的光致发光 [J]. 材料研究学报, 2000, 14(6): 639
[31] Ni M, Leung M, Leung D, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renew. Sust. Energ. Rev., 2007, 11(3): 401
[32] Iwasaki M, Hara M, Kawada H, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light [J]. J. Colloid Interface Sci., 2000, 224(1): 202
[33] Yoneyama H, Yamashita&Amp Y, Tamura H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts [J]. Nature, 1979, 282(5741): 817
[34] Alt?n ?lknur, MünevverS?kmen n, ZekeriyaB?y?kl?o?l u. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal [J]. Mat. Sci. Semicon. Proc., 2016, 45: 36
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!