Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 666-672    DOI: 10.11901/1005.3093.2019.060
ARTICLES Current Issue | Archive | Adv Search |
Effect of PEG6000 on Electroless Copper in Dual-Ligands System
LU Jianhong1,2,DENG Xiaomei3,YAN Jianhui3,TU Jiguo1,WANG Mingyong1(),JIAO Shuqiang1()
1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2. Changzhou Institutes of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, China
3. School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
Cite this article: 

LU Jianhong, DENG Xiaomei, YAN Jianhui, TU Jiguo, WANG Mingyong, JIAO Shuqiang. Effect of PEG6000 on Electroless Copper in Dual-Ligands System. Chinese Journal of Materials Research, 2019, 33(9): 666-672.

Download:  HTML  PDF(4493KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of surfactant polyethylene glycol (PEG) 6000 on the electroless copper plating process in a bath of dual-ligands ethylenediamine tetraacetic acid (EDTA)/tetrahydroxypropyl ethylenediamine (THPED) was investigated by electrochemical method. Mixed potential-time curves indicate that the overall process can be divided into three districts: induction, transitional and stable region. PEG6000 can slowdown the negative shifting of electrode potential, which related to the retardation of the adsorption of charged ions resulted from the surfactant adsorption on the copper electrode. Linear sweep voltammetry measurements show that cathodic reduction reaction is the controlling step for the plating process; PEG6000 could retard cathodic polarization, therewith, the peak value of cathodic reduction current decreased about 40%, so PEG6000 linearly reduced deposit speed. The copper layers prepared from the bath with PEG6000 are product of high-purity with a surface morphology of uniformly distributed fine particles, moreover, the addition of PEG6000 favored the formation of copper layer with (220) preferred orientation with refined grains of average size 50.0 nm, in comparison with 77.7 nm that from the bath without PEG6000 addition.

Key words:  surface and interface in the materials      electroless copper      surfactant      polyethylene glycol 6000      mixed potential      preferred orientation     
Received:  14 January 2019     
ZTFLH:  TQ153  
Fund: the Changzhou Science and Technology Program(CJ20180014)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.060     OR     https://www.cjmr.org/EN/Y2019/V33/I9/666

PEG 6000/mg·L-1 Other items
20 CuSO4?5H2O: 0.05 mol/L
25 EDTA: 0.03 mol/L
30 THPED: 0.025 mol/L
35 NaOH: 0.2 mol/L
40

Formalin: 0.1 mol/L

2,2’-dipyridyl: 8 mol/L

Table1  Chemical composition under PEG6000 concertration
Fig.1   E mix-t curves under different PEG6000 concentration
PEG6000/mg·L-1 0 20 25 30 35 40
Fall-off value of E mix ΔU/V 0.095 0.082 0.071 0.064 0.059 0.043
Table 2  Fall-off value of E mix under different PEG6000 concentration
Fig.2  Influence of PEG6000 concentration on the cathodic reduction of Cu(II)ion
Concentration of PEG6000/mg·L-1 0 20 25 30 35 40
Reduction current density/μA·cm-2 131 120 112 105 96 78
Table 3  Current value of cathodic reduction for different PEG6000 concentration
Fig.3  Influence of PEG6000 concentration on the anodic oxidation of formaldehyde
Concentration PEG6000/mg·L-1 0 20 25 30 35 40
Oxidation current density/μA·cm-2 471 567 622 751 871 975
Table 4  Current value of anodic oxidation for different PEG6000 concentration
Fig.4  Effect of PEG6000 concentration on the copper deposition rate
Fig.5  SEM micrographs at different PEG6000 concentration (a) 20 mg, (b) 25 mg, (c) 30 mg, (d) 35 mg, (e) 40 mg
Fig.6  EDS micrographs at different PEG6000 concentration (a) 20 mg, (b) 25 mg, (c) 30 mg, (d) 35 mg, (e) 40 mg
Fig.7  XRD patterns of electroless copper layer at different PEG6000
Concentration of PEG6000/mg·L-1 Crystallite size/nm I (111)/% I (200)/% I (220)/%
20 77.7 36.7 25.9 37.3
25 69.3 34.0 26.4 39.6
30 59.5 32.6 24.0 43.4
35 52.2 31.5 23.2 45.3
40 50.0 27.1 23.9 49.0
Table 5  Intensity ratio of the XRD patterns at different PEG6000 concentration
1 Qiu T , Paul K C . Self-selective electroless plating:an approach for fabrication of functional 1D nanomaterials [J]. Mat. Sci. Eng. R: Reports., 2008, 61: 59
2 Hanna F , Hamid Z A , Aal A A . Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2003, 58(1-2): 104
3 Mishra K G , Paramguru R K . Kinetics and mechanism of electroless copper deposition at moderate-to-high copper ion and low-to-moderate formaldehyde concentrations [J]. Metall. Mater. Trans. B, 1999, 30B: 223
4 Meerakker J E A M van den, Bakker J W G de . On the mechanism of electroless plating .Part 3.Electroless copper alloys [J].J. Appl.Electrochem., 1990, 20(1): 85
5 Shacham-Diamand Y , Osaka T , Okinaka Y , et al . 30 years of electroless plating for semiconductor and polymer micro-systems [J]. Microelectron. Eng., 2015, 132: 35
6 Lu J H , Jiao H D , Jiao S Q . Theoretical basis and prospect of complexes in electroless copper plating process [J]. Electroplat & Finish., 2016, 35(13): 705
6 卢建红, 焦汉东, 焦树强 . 化学镀铜配合物的理论基础及展望[J]. 电镀与涂饰, 2016, 35(13): 705
7 Lin Y M , Yen S C . Effects of additives and chelating agents on electroless copper plating [J]. Appl. Surf. Sci., 2001, 178: 116
8 Lu J H , Jiao H D , Jiao S Q . Effect of sodium 3, 3-dithiodipropane sulfonate in a dual ligand electroless copper system [J]. Chin. J. Eng., 2017, 39(9): 1380
8 卢建红, 焦汉东, 焦树强 . 聚二硫二丙烷磺酸钠在二元络合化学镀铜体系中的作用 [J]. 工程科学学报, 2017, 39(9): 1380
9 Gan X P , Zhou K C , Hu W B ,et alRole of additives in electroless copper plating using hypophosphite as reducing agent [J]. Surf. Coat.Tech., 2012, 206: 3405
10 Chen W S , Luo G Q , Li M J , et al . Effect of 2,2’-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders preparedusing electroless plating [J]. Appl. Surf. Sci., 2014, 301: 85
11 Vaskelis A , Jaciauskien J , Stalnionien I , et al . Accelerating effect of ammonia on electroless copper deposition in alkaline formaldehyde-containing solutions [J]. J. Electroanal. Chem., 2007, 600: 6
12 Shingubara S , Wang Z L , Yaegashi O , et al . Bottom-up fill of copper in deep submicrometer holes by electroless plating [J]. Electrochem. Solid. St., 2004, 6:78
13 Gu X , Wang Z C , Lin C J . An Electrochemical study of the effects of chelating agents and additives on electroless copper plating [J]. Electrochem., 2004, 10(1): 14
13 谷 新, 王周成, 林昌健 . 络合剂和添加剂对化学镀铜影响的电化学研究 [J]. 电化学, 2004, 2: 14
14 Yang B , Yang F Z , Huang L , et al . Research of 2, 2’-dipyridine on electroless copper plating using sodium hypophosphite as reductant [J]. Electrochem., 2007,13 (4) :425
14 杨 斌, 杨防祖, 黄 令 等 . 2,2’-联吡啶在化学镀铜中的作用研究 [J]. 电化学, 2007, 13(4): 425
15 Fan J L . Theory and Application of Electroplating Additives [M]. Beijing: National Defense Industry Press, 2006
15 方景礼著 .电镀添加剂理论与应用 [M]. 北京: 国防工业出版社,2006
16 Yu S Y , Qin X C . Study on 96Al2O3 ceramic with electroless copper plating [J]. J. Xi’an Jiaotong Univ., 1995, 1: 34
16 余尚银, 秦效慈 . 96Al2O3瓷上化学镀铜工艺和机理的研究 [J]. 西安交通大学学报, 1995, 1: 34
17 Gan X P , Wu Y T , Liu L , et al . Effects of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Appl. Electrochem., 2007, 37: 899
18 Cao Q G , Chen S R , Yang Q , et al . Influences of additive on electroless plating in tetrahydroxypropyl ethylenediamine-disodium ethylene diamine tetraacetic acetate Bath [J]. Mater. Prot., 2015, 48(1): 5
18 曹权根, 陈世荣, 杨 琼 等 . 添加剂对四羟丙基乙二胺-乙二胺四乙酸二钠体系化学镀厚铜的影响 [J]. 材料保护, 2015, 48(1): 5
19 Shan D D , Yang F Z , Wu H H . 2,2’-dipyridyl and K4Fe(CN)6 on electroless copper plating using glyoxylic acid as reducing agent [J]. Electrochem., 2007, 13(1): 67
19 申丹丹, 杨防祖, 吴辉煌 . 2,2’联吡啶和亚铁氰化钾对乙醛酸化学镀铜的影响 [J]. 电化学, 2007, 13(1): 67
20 Gao S , Tao R , Yang F . Effect of HEDTA and potassium ferrocyanide on electroless copper coating on the surface of acrylic fabric [J]. Mater. Prot., 2015, 48(10): 4
20 高 嵩, 陶 睿, 杨 帆 . HEDTA、亚铁氰化钾添加剂对腈纶表面化学镀铜的影响 [J]. 材料保护, 2015, 48(10): 4
21 Gan X P . Influences of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Mater. Eng., 2009, 4: 39
21 甘雪萍 . 亚铁氰化钾对以次磷酸钠为还原剂化学镀铜的影响 [J]. 材料工程, 2009, 4: 39
22 Li J , Kohl Paul A . The deposition characteristics of accelerated nonformaldehyde electroless copper plating [J]. J. Electrochem.Soc., 2003, 150(8): 558
23 Zheng Y J , Zou W H , Yi D Q , et al . Technology and application of electroless copper plating [J]. Mater. Rev., 2005, 19(9): 76
23 郑雅杰, 邹伟红, 易丹青 等 . 化学镀铜及其应用 [J]. 材料导报, 2005, 19(9): 76
24 Hasegawa M , Okinaka Y , Shacham-Diamand Y , et al . Void-free trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives [J]. J. Electrochem.Solid.St., 2006, 9(8): C138.
25 Gu X , Hu G H , Wang Z C , et al . In situ investigation on the behavior of mixed potential in electroless copper plating [J]. J. Acta Physico-Chimica Sinica, 2004, 20(2): 113
25 谷 新, 胡光辉, 王周成 等 . 化学镀铜过程混合电位本质的研究 [J]. 物理化学学报, 2004, 20(2): 113
26 Bindra P , Roldan J . Mechanisms of electroless metal plating. III.mixed potential theory and the interdependence of partial reactions [J]. J. Appl. Electrochem., 1987, 17: 1254
27 Datu E M , Balela M D L . In situ electrochemical study of copper nanoparticles stabilized with food grade gelatin [J]. Key. Eng. Mat., 2016, 705: 163
28 Inoue F , Philipsen H , Radisic A , et al . Electroless copper bath stability monitoring with UV-VIS spectroscopy, pH, and mixed potential measurements [J]. J . Electrochem. Soc., 2012, 159(7): 437
29 Lee C H , Lee S C , Kim J J . Bottom-up filling in Cu electroless deposition using bis·(3-sulfopropy1) disulfide(sps) [J]. J. Electrochim. Acta., 2005, 50: 3563
30 Lu J H , Jimmy Y , Lei H P , et al . Influence of EDTA/THPED dual-ligand on copper electroless deposition [J]. Int. J. Electrochem. Sci., 2018, 13: 6015
31 Hu F T , Yang S , Wang H Z , et al . Electroless silver coating on copper microcones for low-temperature solid-state bonding [J]. J. Electron. Mater., 2015, 11: 4516
32 Shanmugam N , Cholan S , Kannadasan N , et al . Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method [J]. J. Nanomater., 2013: 1
33 Andrew K K , Dennis C N . Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J]. Carbon, 2003, 41(1): 15
34 Zhou F L , Li X M , Gao X D . Effects of surfactants on electroless Ni-P plating on Al2O3 ceramic and properties of coatings [J]. Chin.J.Inorg.Chem., 2009, 25(9): 1584
34 周凤玲, 李效民, 高相东 . 表面活性剂对陶瓷基底化学镀镍的作用机理及镀层性能的影响 [J]. 无机化学学报, 2009, 25(9): 1584
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!