Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 81-87    DOI: 10.11901/1005.3093.2016.291
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Resistance of 316 Stainless Steel after Low-temperature Low-pressure Arc Plasma Nitriding
Wenjin YANG1,2,Yanhui ZHAO2(),Mingli SHEN2,Zhanqi LIU2,Jinquan XIAO2,Jun GONG2,Baohai YU2,Chao SUN2
1 School of Materials Science and Engineering, University of Science and Technology of China, Anhui 230027, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Wenjin YANG,Yanhui ZHAO,Mingli SHEN,Zhanqi LIU,Jinquan XIAO,Jun GONG,Baohai YU,Chao SUN. Corrosion Resistance of 316 Stainless Steel after Low-temperature Low-pressure Arc Plasma Nitriding. Chinese Journal of Materials Research, 2017, 31(2): 81-87.

Download:  HTML  PDF(3998KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-pressure arc plasma nitriding is a novel rapid plasma nitriding process which can significantly enhance wear and corrosion resistance of austenite stainless steels. In this study, low temperature (~ 400℃) nitriding was applied to AISI 316 austenitic stainless steel (316 SS). A nitriding layer of 15 μm thickness was obtained just after 1 h processing, which is composed of an outer thin sublayer of nanocrystalline expanded austenite (nano-γN) with a trace of Cr nitrides and an inner thick coarse-grained expanded austenite (γN) sublayer. The thin surface nanolayer plays the key role in corrosion resistance of the nitrided layer, which promotes the formation of passive film. And the thickness of the passive film formed on the surface of the nitrided steel is 27 nm, which is two times over that on the bare 316 stainless steel. The corrosion current of nitrided steel is 3.55×10-8 A/cm2 in 3.5% NaCl solution, c.a. one order of magnitude lower than that of the untreated 316 austenite stainless steel (1.99×10-7 A/cm2), which indicated that the nitrided layer had a lower corrosion rate. The pitting corrosion potential was not detected via electrochemical polarization experiments, exhibiting a better pitting corrosion resistance of the nitrided steel.

Key words:  materials failure and protection      low-pressure arc plasma nitriding      nano-crystalline expanded austenite      nitriding kinetics      corrosion resistance     
Received:  26 May 2016     
Fund: Supported by National Natural Science Foundation of China (No.51171197)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.291     OR     https://www.cjmr.org/EN/Y2017/V31/I2/81

Fig.1  Schematic diagram of the low-pressure arc plasma-assisted nitriding device
Fig.2  Cross-sectional SEM images (a) and EPMA depth profiles (b) of the nitrided sample
Fig.3  XRD patterns of the untreated and nitrided samples
Fig.4  TEM image of the top-surface layer (a) and (c) of the nitrided layer, and their corresponding SAED patterns (b) and (d)
Fig.5  Surface morphology of the samples after immersed in 3.5% NaCl solution for 48 h (a) the substrate, (b) nitrided layer and (c) nitrided layer without nano-sublayer
Samples Ecorr (mV) Icorr
(A/cm2)
Ep
(mV)
Substrate -155.55 1.99×10-7 0.3~0.6
Nitrided layer -172.15 3.55×10-8
Nitrided layer without
nano-sublayer
-251.84 5.21×10-7 0.5~0.6
Table 1  Corrosion potential (Ecorr vs. SCE), Corrosion current density (Icorr) and Pitting potential (Ep vs. SCE) of samples in 3.5% NaCl solution
Fig.6  Potentiodynamic polarization curves of samples in 3.5% NaCl solution
Fig.7  XPS depth profiles of (a) 316 stainless steel substrate, (b) nitrided layer and (c) nitrided layer without nano-sublayer
[1] Zhang Z L, Bell T.Structure and corrosion resistance of plasma nitrided stainless steel[J]. Surf. Eng., 1985, 1(2): 131
[2] Lei M K, Zhu X M, Yuan L J, et al.Corrosion resistance of modified surface layer on austenitic stainless steel Ⅰ. pitting corrosion and general corrosion properties[J]. Acta. Metall. Sin., 1999, 35(10): 1081
[2] (雷明凯, 朱雪梅, 袁力江等. 奥氏体不锈钢表面改性层耐蚀性实验研究Ⅰ. 孔蚀和均匀腐蚀性能[J]. 金属学报, 1999, 35(10): 1081
[3] Wang L, Xu X L, Yu Z W, et al.Low pressure plasma arc source ion nitriding of austenitic stainless steel[J]. Sur. Coat. Technol., 2000, 124(2-3): 93
[4] Lin Y H, Lan W C, Ou K L, et al.Hemocompatibility evaluation of plasma-nitrided austenitic stainless steels at low temperature[J]. Sur. Coat. Technol., 2012, 206(23): 4785
[5] Li C X, Bell T.Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel[J] Wear, 2004, 256(11-12): 1144
[6] Lieberman M A, Lichtenberg A J.Principles of Plasma Discharges and Materials Processing[M]. New York: Wiley Interscience, 1994
[7] Randall N X, Renevier N, Michel H, et al.Correlation between processing parameters and mechanical properties as a function of substrate polarisation and depth in a nitrided 316 L stainless steel using nanoindentation and scanning force microscopy[J]. Vacuum, 1997, 48(10): 849
[8] Goncharenko I M, Grigoriev S V, Lopatin I V, et al. Surface modification of steels by comples diffusion saturation in low pressure arc discharge [J]. Sur. Coat. Technol., 2003, 169-170: 419
[9] Zhao Y H, Yu B H, Dong L M, et al.Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel[J]. Sur. Coat. Technol., 2012, 210: 90
[10] Gorokhovsky V, Belluz P D B, Ion treatment by low pressure arc plasma immersion surface engineering processes[J]. Sur. Coat. Technol., 2013, 215: 431
[11] Czerwiec T, Michel H, Bergmann E.Low-pressure, high-density plasma nitriding: mechanisms, technology and results [J]. Sur. Coat. Technol., 1998, 108-109: 182
[12] Rudenja S, Pan J, Wallinder I O, et al.Enhanced passivity of austenitic AISI 304 stainless steel by low-temperature ion nitriding[J]. J. Vac. Sci. Technol. A, 2001, 19(4): 1425
[13] Wang L.Surface modification of AISI 304 austenitic stainless steel by plasma nitriding[J]. Appl. Surf .Sci., 2003 211(1-4): 308
[14] Yang W J, Zhang M, Zhao Y H, et al.Enhancement of mechanical property and corrosion resistance of 316L stainless steels by low temperature arc plasma nitriding[J]. Sur. Coat. Technol., 2016, 298: 64
[15] Li N, Li Y, Wang S G, et al.Corrosion behavior of nanocrystallized bulk 304 stainless steel Ⅰ. The research on anti-chloride ion attack of the passive film[J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80
[15] (李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究Ⅰ. 钝化膜耐氯离子侵蚀能力[J].中国腐蚀与防护学报, 2007, 27(2): 80
[16] Borgioli F, Galvanetto E, Bacci T.Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels[J] Vacuum, 2016, 127: 51
[17] Rong D S, Jiang Y, Gong J M.Experimental research and thermodynamic simulation of low temperature colossal carburization of austenitic stainless steel[J]. Acta. Metall. Sin., 2015, 51(12): 1516
[17] (荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12): 1516
[1] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
[9] HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. 材料研究学报, 2021, 35(12): 933-941.
[10] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[12] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[14] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
No Suggested Reading articles found!