Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 627-632    DOI: 10.11901/1005.3093.2013.883
Current Issue | Archive | Adv Search |
Effect of Cr and Al on Hot Corrosion Behavior of Low Thermal Expansion Thermo-span Superalloy at 650℃
Yaru SUN(),Suai ZHAO,Daile ZHANG,Qing HE
Shenyang University of Technology, Shenyang 110870
Cite this article: 

Yaru SUN,Suai ZHAO,Daile ZHANG,Qing HE. Effect of Cr and Al on Hot Corrosion Behavior of Low Thermal Expansion Thermo-span Superalloy at 650℃. Chinese Journal of Materials Research, 2014, 28(8): 627-632.

Download:  HTML  PDF(7689KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot corrosion behavior of modified and conventional Thermo-Span alloys in 75%Na2SO4+25%NaCl molten salt at 650℃ for 100h was investigated by means of thermogravimetry (TG) and scanning electron microscopy equipped with energy dispersive X-ray Spectrum (EDS). The results show that the corrosion product consisted of oxides and sulfides exhibits a three layered structure: the external layer consists of Fe、Co and Cr oxides, in addition, Al and Co oxides also exist in this layer of the modified alloy; the intermediate layer is mixed oxides composed of Al、Cr and Ni and sulfides formed in the inner layer consisted of Ni and Co, the inner sulfidation layer in standard alloy is thicker than that in the modified alloy. For the modified alloy with higher Al addition, an aluminum rich oxide scale can form at the interface oxide scale/substrate , which can block the outwards diffusion of Fe and Co, and the inwards diffusion of O and S elements hence enhanced the hot corrosion resistance of the modified Thermo-Span alloy .

Key words:  materials failure and protection      hot corrosion      thermo-span superalloy      corrosion rate      corrosion layer     
Received:  22 November 2013     
Fund: *Supported by Research Program of Liaoning Province Department of Education No.2008502.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.883     OR     https://www.cjmr.org/EN/Y2014/V28/I8/627

Fig.1  Kinetics curves of hot corrosion of experimental alloys at 650℃ (a) standard alloy; (b) modified alloy
Fig.2  Square of mass gain of experimental alloys versus oxidation time at 650℃ (a) standard alloy; (b) modified alloy
Fig.3  Surface morphologies and EDS of Thermo-Span alloy after heat corrosion at 650℃ for 100 h (a) surface morphologies; (b) EDS of 1 point in Fig.3a; (c) EDS of 2 point in Fig.3a; (d) EDS of 3 point in Fig.3a
Fig.4  Surface morphologies and EDS of oxide on surface of modified alloy after heat corrosion at 650℃ for 100 h (a)(b)(c) surface morphologies; (d) (e) EDS of 1 point and of 2 point in Fig.4a; (f) EDS of 3 point in Fig.4b; (g) EDS of 4 point in Fig.4c
Fig.5  Cross-sectional SEM morphologies and the element maps of standard alloy after hot corrosion at 650℃ for 100 h (a) morphologies of alloy; (b) O; (c) Co; (d) Cr; (e) Fe; (f) Nb; (g) Ti; (h) S; (i) Al; (j) Ni
Fig.6  Cross-sectional SEM morphologies and the element maps of modified Thermo-Span alloy after hot corrosion at 650℃ for 100 h (a) morphologies of modified alloy; (b) O; (c)Co; (d) Cr; (e) Fe; (f) Nb; (g) Ti; (h) S; (i) Al; (j) Ni
Fig.7  Morphologies and EDS of sulfur of standard alloy
1 HAN Guangwei,DENG Bo, YANG Yunjun, Comparison and research on corrosion resistance behavior of various low thermal expansion superalloys under simulated marine environment, Journal of Iron and Steel Research, 23(2), 21(2011)
1 (韩光炜, 邓 波, 杨玉军, 海洋环境下不同低膨胀高温合金腐蚀抗力的比较研究, 钢铁研究学报, 23(2), 21(2011))
2 HU Yisong,YU Lianxu, YANG Lianzhong, Long-term thermal stability of Thermo-Span alloy at 650 ℃, Transactions of Materials and Heat Treatment, 34(8), 55(2013)
2 (胡轶嵩, 于连旭, 杨连忠, Thermo-Span 合金在650℃长期时效稳定性, 材料热处理学报, 34(8), 55(2013))
3 DENG Bo,HAN Guangwei, FENG Di, Development of low thermal expansion superalloys and their application in aerospace, Journal of Aeronautical Materials, 23(S), 244(2003)
3 (邓 波, 韩光炜, 冯 涤, 低膨胀高温合金的发展及在航空航天业的应用, 航空材料学报, 23(S), 244(2003))
4 Hedk K A,Smith D F, Smith J S, The physical metallurgy of a silicon-containg low expansion superalloy , In: S. Reichman, eds. Superalloys 1988, TMS, Warrandele, PA. 151(1988)
5 Wanner E A,Daniel D A, Development of a new controlled Thermal Expansion superalloy with improved oxidation resistance. In: Antolovich S D, Stusrud R W, MacKay R A, eds, Superalloys 1992, TMS-AIME, 237(1992)
6 LI Yun,GUO Jianting, YUAN Chao, Hot corrosion of nickel-base cast superalloy K35 at 800℃, Journal of Chinese Society for Corrosion and Protection, 25(4), 250(2005)
6 (李 云, 郭建亭, 袁超, 镍基铸造高温合金K35 的热腐蚀行为, 中国腐蚀与防护学报, 25(4), 250(2005))
7 Meier G.H,A review of advances in high-temperature corrosion, Materials Science and Engineering: A, 120-121(1), 1(1989)
8 SUN Yaru,YU Lianxu, SUN Wenru, Effect of cooling rate on microstructure and stress rupture life of Thermo-Span superalloy, Transactions of Materials and Heat Treatment, 3(3), 39(2010)
8 (孙雅茹, 于连旭, 孙文儒, 冷却速度对Thermo-Span合金组织和持久性能的影响, 材料热处理学报, 3(3), 39(2010))
9 Gurrappa I. Hot corrosion behavior of CM247LC alloy in Na2SO4 NaCl environments, Oxidation Metals, 51(5/6), 353(1999)
10 Guo M H,Wang Q M, Gong J, Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques, Corrosion Science, 48, 2750(2006)
11 ZHANG Yunshu,Fluxing mechanism of hot corrosion and its limitation, Journal of Chinese Society for Corrosion and Protection, 12(1), 1(1992)
11 (张允书, 热腐蚀的盐溶机理及其局限性, 中国腐蚀与防护学报, 12(1), 1(1992))
12 LI Meishuan, High Temperature Corrosion of Metal (Beijing, Metallurgical Industry Press, 2001)p.147
12 (147)
13 LI Yun,GUO Jianting, YUAN Chao, YANG Hongcai, XU Ning, SHEN Zhiming, Hot corrosion of Nickel-base cast superalloy K35 at 800℃, Journal of Chinese Society for Corrosion and Protection, 25(4), 250(2005)
13 (李 云, 郭建亭, 袁 超, 杨洪才, 徐 宁, 申志明, 铸造镍基高温合金K35的热腐蚀行为, 中国腐蚀与防护学报, 25(4), 250(2005))
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!