Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 395-400    DOI: 10.11901/1005.3093.2013.788
Current Issue | Archive | Adv Search |
Hydrophilicity Degradability and Cell Toxicity of Ti-P Polylactide Paterial Synthesized by Titanium (IV) Complex as Catalyst
Chengbo HU()
Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160
Cite this article: 

Chengbo HU. Hydrophilicity Degradability and Cell Toxicity of Ti-P Polylactide Paterial Synthesized by Titanium (IV) Complex as Catalyst. Chinese Journal of Materials Research, 2014, 28(5): 395-400.

Download:  HTML  PDF(3617KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti-P polylactide was synthesized by ring-opening polymerization (ROP) of D, L-lactide with bis-(alkoxy-imine-phenoxy) titanium (IV) complex as catalyst. The physico-chemical properties of the Ti-P material were investigated by measurements of contact angle, water absorption rate and degradability, while its biocompatibility to MC3T3-E1 cells, such as the proliferation, adhesion and spreading performance of murine preosteoblastic cells (MC3T3-E1) was also investigated. The results show that the hydrophilicity of Ti-P polylactide is weaker than Sn-P polylactide, inversely, its anti-hydrolysis ability is stronger. In contact with the Ti-P polylactide material, the MC3T3-E1 cells showed excellent activity in proliferation, adhesion and spreading. The rudimental Ti(IV) complex in the Ti-P polylactide exihibits non-toxicity to MC3T3-E1 cell and does not hamper the growth of MC3T3-E1 cells on the surface of the Ti-P polylactide material.

Key words:  organic polymer materials      complex      lactide      polylactide      degradation      biocompatibility     
Received:  25 August 2013     
Fund: *Supported by Natural Science Foundation Project of the Chongqing Science and Technology Commission in China No.cstc2013jcyjA50022 and Scientific Research Project of Chongqing University of Arts and Sciences in China No.Z2013CH07.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.788     OR     https://www.cjmr.org/EN/Y2014/V28/I5/395

Samples Contact angles (°) Water absorption rate (%)
Sn-P 73.8±0.92 (n=6) 2.03±0.26 (n=6)
Ti-P 82.2±0.71 (n=6) 1.45±0.42 (n=6)
Table 1  Static water contact angles and water absorption rate of samples
Fig.1  Static water contact angle of two polylactide materials (A: Sn-P, B: Ti-P)
Fig.2  Change of weight loss with degradation time for material samples (n=6)
Fig.3  PH change of distilled water with degradation time for material samples (n=6)
Fig.4  Proliferation of MC3T3-E1 cells by MTT cultured on glass, Sn-P and Ti-P materials (The data are the means ± SD for n=6, **p < 0.05, 490 nm)
Fig.5  Images of MC3T3-E1 cells on different materials after 24 h and 48 h of culture visualized by laser confocal microscope, images show cell nucleus (blue) and actin cytoskeleton (red) of cells
1 Z. Zhong, P. J. Dijkstra, J. Feijen,Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures, Journal of American Chemical Society, 125(37), 11291(2003)
2 H. R. Kricheldorf, I. Kreiser-Saunders, C. Boettcherl,Polylactones: 31. Sn(II) octoate-initiated polymerization of L-Lactide: a mechanistic study, Polymer, 36(6), 1253(1995)
3 C. P. Radano, G. L. Baker, M. R. Smith,Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide, Journal of American Chemical Society, 122(7), 1552(2000)
4 A. John, V. Katiyar, K. Pang, M. M. Shaikh, H. Nanavati, P. Ghosh,Ni(II) and Cu(II) complexes of phenoxy-ketimine ligands: synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-Lactide, Polyhedron, 26(15), 4033(2007)
5 A. Amgoune, C. M. Thomas, T. Roisnel,Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligand: combining high activity, productivity, andselectivity, Chemistry-A European Journal, 12(1), 169(2005)
6 N. Nomura, R. Ishii, Y. Yamamoto, T. Kondo,Stereoselective ring-opening polymeization of a racemic Lactide by using achiral salen- and homosalen-aluminum complexes, Chemistry-A European Journal, 13(16), 4433(2007)
7 D. J. Darensbourg, O. Karroonnirun,Stereoselective ring-opening polymerization of rac-Lactides catalyzed by chiral and achiral aluminum Half-Salen complexes, Organometallics, 29(21), 5627(2010)
8 H. Ma, J. Okuda,Kinetic and Mechanism of L-lactide polymerization by rare earth metal silylamido complexes: effect of alcohol addition, Macromolecules, 38(7), 2665(2005)
9 M. H. Chisholm,Catalytic formation of cyclic-esters and depsipeptides and chemical amplification by complexation with sodium ions, Journal of Organometallic Chemistry, 693(5), 808(2008)
10 C. Hu, Y. Wang, H. Xiang, Y. Fu, C. Fu, J. Sun, Y. Xiang, C. Ruan, X. Li,Synthesis and characterization of Ti(Tbse)2 and its application as a catalyst for ROP of rac-Lactide, Polymer International, 61(10), 1564(2012)
11 C. Hu, Y. Fu, H. Xiang, Y.Fu, J.Sun, M.Deng, X. Xiang,The Novel [(dME)2(HIM)P]2Ti (IV) Complex: synthesize, characterization and its utility in ROP of D, L-Lactide, Polymer Bulletin, 69(5), 511(2012)
12 HU Chengbo,FU Ya, XIANG Hongzhao, SUN Jiaoxia, RUAN Changshun, LI Xiang, XIANG Yan, PENG Qin, WANG Yuanliang, ROP of D, L-Lactide catalyzed by bis(alkoxy-imine-phenoxy) titanium(IV) complex: kinetic and mechanism, Acta Chimica Sinica, 69(21), 2574(2011)
12 (胡承波, 傅 亚, 向鸿照, 孙娇霞, 阮长顺, 李 香, 向 燕, 彭 琴, 王远亮, 双(烷氧-亚胺芳氧)基钛(IV)配合物催化D, L-丙交酯开环聚合、动力学及机理, 69(21), 2574(2011))
13 HU Chengbo, XU Qiang, WANG Yuanliang, ZHENG Shiyuan, Microstructure analysis of Ti-P polylactide synthesized by titanium(IV) complex as catalyst, 21(4), 18(2013)
13 (胡承波, 徐 强, 王远亮, 郑士远, 钛(IV)配合物催化合成TI-P聚乳酸材料微观结构分析, 21(4), 18(2013))
14 S. Kaihara, S. Matsumura, A. G. Mikos, J. P. Fisher,Synthesis of poly(L-lactide) and polyglycolide by Ring-opening polymerization, Nature protocols, 2(11), 2767(2007)
15 K. B. Vartanian, S. J. Kirkpatrick, S. R. Hanson, M. T. Hinds,Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces, Biochemical and Biophysical Research Communications, 371(4), 787(2008)
16 CAI Qing,BEI Jianzhong, WANG Shenguo, WANG Changyong, FAN Ming, LIU Shuang, ZHAO Qiang, Study on the biocompatibility and degradation behavior of polyl( l-lactide-co- glycolide) in vitro and in vivo, Journal of Functional Polymers, 13(3), 249(2000)
16 (蔡 晴, 贝建中, 王身国, 王常勇, 范 明, 刘 爽, 赵 强, 乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究, 功能高分子学报, 13(3), 249(2000))
17 X. Wu, N. Wang,Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation, Journal of Biomaterials Science-Polymer Edition, 12(1), 21(2001)
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[5] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[6] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] HOU Yutong, LI Xin, LI Dawei, WEI Qufu. Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol[J]. 材料研究学报, 2022, 36(10): 793-800.
[10] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[13] LINGHU Changkai, LI Xiaolong, LUO Zhu, YANG Le, XIA Xiaosong. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend[J]. 材料研究学报, 2021, 35(8): 632-640.
[14] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[15] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
No Suggested Reading articles found!