Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 632-640    DOI: 10.11901/1005.3093.2020.300
ARTICLES Current Issue | Archive | Adv Search |
Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend
LINGHU Changkai1, LI Xiaolong1, LUO Zhu1(), YANG Le2, XIA Xiaosong1
1.Department of Polymer Materials Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Cite this article: 

LINGHU Changkai, LI Xiaolong, LUO Zhu, YANG Le, XIA Xiaosong. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend. Chinese Journal of Materials Research, 2021, 35(8): 632-640.

Download:  HTML  PDF(8451KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A rapid degradation material, ferric chloride (FeCl3) catalyzed polylactic acid (PLA) PLA/FeCl3 was prepared by the melt blending method, which presents degradation rate of 10 times higher than that of bare PLA. However, the molecular weight of PLA/FeCl3 is greatly reduced during the processing, which results in decrease in mechanical properties and processability. In order to reduce the over-degradation of PLA/FeCl3 in melt processing, triphenyl phosphite (TPPi), which has excellent chain extension and plasticizing effect, was introduced into the PLA/FeCl3 system and melt blended to improve its comprehensive mechanical properties. The degradation rate and comprehensive performance of the prepared samples were investigated via alkaline solution degradation test and various test methods. The results show that the sample P3-1 had the best performance when the ratio of TPPi to FeCl3 was 3∶1, namely, the tensile strength and flexural strength reached 43.78 MPa and 99.04 MPa, respectively. The mass loss rate of degradation for 8d in alkaline solution is 65.76%, which was much higher than that of 4.67% for bare PLA. The sample containing 2.95 phr FeCl3 has been able to produce a high degradation rate in the alkaline solution without over-degradation during the processing, thereby obtaining a modified PLA material that can quickly degrade and maintain good mechanical properties.

Key words:  composite      polylactic acid      ferric chloride      triphenyl phosphite      degradation behavior      mechanical property     
Received:  20 July 2020     
ZTFLH:  TQ323  
Fund: Technology Department of Guizhou Province(20195607)
About author:  LUO Zhu, Tel: 13985181265, E-mail: luozhu2000@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.300     OR     https://www.cjmr.org/EN/Y2021/V35/I8/632

Sample PLA TPPi FeCl3
P0-010000
P0-110002.95
P1-11002.952.95
P2-11005.902.95
P3-11008.852.95
P4-110011.802.95
P5-110014.752.95
Table 1  Sample material preparation formula (phr)
Fig.1  Torque curves of pure PLA and TPPi modified PLA/FeCl3 materials during reactive processing
Fig.2  FTIR of pure PLA, TPPi, FeCl3 and purified TPPi modified PLA/FeCl3 materials (a) infrared spectra of all samples; (b) local amplification FTIR of TPPi and its modified samples
Fig.3  TPPi inhibits over-degradation of PLA/FeCl3 modified materials
Fig.4  Change process of degradation behavior of pure PLA and TPPi modified PLA/FeCl3 samples in 10% (mass fraction) sodium hydroxide solution (a) 1 d, (b) 3 d, (c) 5 d; (b-1) P2-1 morphologie after 3 days of degradation, (b-2) morphology of all samples after 3 days of degradation
Fig.5  Mass loss rate of pure PLA and TPPi modified PLA/FeCl3 samples in NaOH solution
Fig.6  TG/DTG curves of pure PLA and TPPi modified PLA/FeCl3 samples
Sample

Temperature of

loss 5%/℃

Maximum decomposition

temperature of the first platform/℃

Maximum decomposition temperature of the second platform/℃
PLA351389-
P0-1258315-
P1-1228194353
P2-1204196378
P3-1197205391
P4-1173177393
P5-1143167395
Table 2  Thermogravimetric data of the sample in Fig.6
Fig.7  Energy storage modulus of pure PLA and TPPi modified PLA/FeCl3 materials varies with angular frequency at 170℃
Fig.8  Complex viscosity of pure PLA and TPPi modified PLA/FeCl3 material varies with angular frequency
Fig.9  Molecular weight and distribution of pure PLA and purified TPPi modified PLA/FeCl3 materials
SampleMn (g/mol)Mw (g/mol)Mw/Mn
P0-054,266914381.685
P0-15,524297305.382
P1-128,135944463.357
P3-139,810867702.180
P5-144,668466781.045
Table 3  GPC parameters of PLA and its modified samples are derived in Fig.9
Fig.10  Mechanical properties of pure PLA and TPPi modified PLA/FeCl3 materials
1 Alippilakkotte S, Sreejith L. Benign route for the modification and characterization of poly(lactic acid) (PLA) scaffolds for medicinal application [J]. J. Appl. Polym. Sci., 2018, 135(13): 46056
2 Marra A, Silvestre C, Duraccio D, et al. Polylactic acid/zinc oxide biocomposite films for food packaging application [J]. Int. J. Biol. Macromol., 2016, 88: 254
3 Li M Z, Hu X Y, Yu J, et al. Structure and properties of epoxy modified PLA/low melting point PA6 composites [J]. Chin. J. Mater. Res., 2019,33(4):261
李明专, 胡孝迎, 何敏等.环氧树脂改性聚乳酸/低熔点尼龙6复合材料的结构和性能 [J].材料研究学报,2019,33(4):261
4 Arnau Carné Sánchez, Collinson S R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions [J]. Eur. Polym. J., 2011, 47(10): 1970
5 Zhu D Y, Gu T, Yu J, et al. Dynamic rheological characterization of PLA/PBS blends compatibilized by epoxy furan resin [J]. Chin. J. Mater. Res., 2018,32(7):547
朱大勇, 辜婷, 于杰等. 环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征 [J]. 材料研究学报, 2018, 32(7): 547
6 Zuo Y F, Gu J, Qiao Z, et al. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. [J]. Int. J. Biol. Macromol., 2015, 72: 391
7 Ramlee N A, Tominaga Y. Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic acid) blends [J]. Polymer, 2019, 166: 44
8 Felfel R M, Hossain K M Z, Parsons A J, et al. Accelerated in vitro degradation properties of polylactic acid/phosphate glass fibre composites [J]. J. Mater. Sci., 2015, 50(11): 3942
9 Yang C H, Ma F C, Gao C G, et al. Degradation properties of polylactic acid and its copolymer monofilaments in vitro [J]. Polym. Mater. Sci. Eng., 2019, 35(11): 101
杨彩红, 马凤仓, 高晨光等. 聚乳酸及其共聚物单丝的体外降解性能 [J]. 高分子材料科学与工程, 2019, 35(11): 101
10 And T M O, Coates G W. Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid) [J]. J. Chem. Soc., 2000, 121(16): 4072
11 Orozco V H, Kozlovskaya V, Kharlampieva E, et al. Biodegradable self-reporting nanocomposite films of poly(lactic acid) nano-particles engineered by layer-by-layer assembly [J]. Polymer, 2010, 51(18): 4127
12 Li X L, Gong S, Yang L, et al. Study on the degradation behavior and mechanism of poly(lactic acid) modification by ferric chloride [J]. Polymer, 2019, 188: 121991
13 Zhou F, Lu Q, Zhang Y H, et al. Effect of chain extender triphenyl phosphite on the structure and properties of r-PETG [J]. Polym. Mater. Sci. Eng., 2017, 33(2): 78
周峰, 吕奇, 张月航等. 扩链剂亚磷酸三苯酯对r-PETG结构与性能的影响 [J]. 高分子材料科学与工程, 2017, 33(2): 78
14 Aharoni, Shaul M. Physics of injection-moldable PET [J]. Int. J. Polym. Mater., 2001, 50(3-4): 301
15 Ma M, Xu L, Liu K, et al. Effect of triphenyl phosphite as a reactive compatibilizer on the propertiesof poly (lactic acid)/poly (butylene succinate) blends [J]. J. Appl. Polym. Sci., 2019, 137(355): 48646
16 Dias M L, Silva A P F. Transesterification reactions in triphenyl phosphite additivated‐poly(ethylene terephthalate)/poly(ethylene naphthalate) blends [J]. Polym. Eng. Sci., 2000, 40(8): 1777
17 Xie J X, Yang R J. Preparation and characterization of high-molecular-weight poly(L-lactic acid) by chain-extending reaction with phosphites [J]. J. Appl. Polym. Sci., 2012, 124(5): 3963
18 Tang G, Wang X, Xing W, et al. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite [J]. Ind. Eng. Chem. Res., 2012, 51(37): 12009
19 Wang Y, Steinhoff B, Brinkmann C, et al. In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV-vis spectroscopy [J]. Polymer, 2008, 49(5): 1257
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!