Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 387-394    DOI: 10.11901/1005.3093.2013.992
Current Issue | Archive | Adv Search |
Preparation of Ti2AlNb Alloy by Powder Metallurgy and Its Rupture Lifetime
Jie WU,Lei XU(),Bin LU,Yuyou CUI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Jie WU,Lei XU,Bin LU,Yuyou CUI,Rui YANG. Preparation of Ti2AlNb Alloy by Powder Metallurgy and Its Rupture Lifetime. Chinese Journal of Materials Research, 2014, 28(5): 387-394.

Download:  HTML  PDF(5967KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pre-alloyed powder of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared by crucibleless induction melting and gas atomization process. Then with the pre-alloyed powder, a powder metallurgical (PM) Ti2AlNb alloy was fabricated by a hot isostatic pressing route. The results show that the hot isostatic pressing temperature affects the metallurgical quality of PM Ti2AlNb alloys; the post heat treatment affects obviously the microstructure and the performance of the PM alloy; a good combination of tensile strength, ductility and rupture lifetime could be obtained through an optimized heat treatment process. It follows that the rupture lifetime of PM Ti2AlNb alloys was controlled by the interaction of multiple factors such as the sizes and volume fractions of α2, O and B2 phases after various heat treatments. With the increase of aging temperature (800~850℃), the size of secondary O phase increased and α2 volume fraction decreased, thereby the rupture lifetime was increased. With the increase of aging temperature (850-900℃), the size of secondary O phase and α2 volume fraction remain nearly constant. It was the increase of B2 volume fraction and α2 size that improve the rupture lifetime of PM Ti2AlNb alloys.

Key words:  metallic materials      powder metallurgy      Ti2AlNb      rupture lifetime      near net shape manufacture     
Received:  31 December 2013     
Fund: *Supported by National High Technology Research and Development Program of China No.2013AA031606.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.992     OR     https://www.cjmr.org/EN/Y2014/V28/I5/387

Fig.1  Differential size distribution of Ti2AlNb pre-alloyed powder
Fig.2  Micro-segregation of Al and Nb for Ti2AlNb pre-alloyed powder with different particle sizes
Fig.3  Microstructures of PM Ti2AlNb alloy after HIPing at 980℃/140 MPa/3 h (a), 1010℃/140 MPa/3 h (b), and 1030℃/140 MPa/3 h (c)
Fig.4  Porosity distribution of PM Ti2AlNb alloy under different HIP circles
Fig.5  Effect of solution temperature on RT tensile properties of PM Ti2AlNb alloys
Fig.6  Effect of solution temperature on the microstructure of PM Ti2AlNb alloys, (a) 900℃, (b) 930℃, (c) 980℃, (d) 1020℃
Aging treatment T/℃ Rp0.2/MPa Rm/MPa A/ L/h Microstructure
980℃/2 h/AC 20 992.12 1061.99 14.12 22.34 equiaxed
650 755.10 1044.10 6.67
980℃/2 h/AC+800℃/24 h/AC 20 1066.29 1133.47 2.37 19.67 lamellar
650 754.50 910.60 6.67
980℃/2 h/AC+830℃/24 h/AC 20 1005.74 1119.20 6.40 52.68
650 711.80 832.70 9.67
980℃/2 h/AC+850℃/24 h/AC 20 979.15 1100.34 7.40 56.97
650 694.80 828.4 12.67
980℃/2 h/AC+880℃/24 h/AC 20 919.48 1038.23 8.24 82.28
650 666.13 788.33 6.67
980℃/2 h/AC+900℃/24 h/AC 20 920.30 1038.60 12.39 88.08
650 675.77 770.80 6.89
1200℃/2 h/FC+760℃/14 h/AC 20 820.92 1003.63 3.72 200.00 widmanstatten
Table 1  Aging heat treatment on the tensile and rupture life at elevated temperature of PM Ti2AlNb alloys
Fig.7  Effect of aging temperature on the microstructure of PM Ti2AlNb alloys, (a) 800℃, (b) 850℃, (c) 900℃
Fig.8  Effect of aging temperature on the size of orthorhombic phase microstructure of PM Ti2AlNb alloys, (a) 800℃, (b) 850℃, (c) 900℃
Aging treatment Vm(α2)/% Vm(B2)/% Vm(O)/% r(α2)/μm r(O)/μm λ(O)/nm L/h
980℃/2 h/AC - - - - - 22.34
980℃/2 h/AC+800℃/24 h/AC 13.77 31.87 54.36 2.29 0.70 125.10 27.65
980℃/2 h/AC+830℃/24 h/AC 11.76 37.35 50.89 2.73 0.97 176.60 52.68
980℃/2 h/AC+850℃/24 h/AC 7.86 39.07 53.07 2.56 1.05 249.74 57.39
980℃/2 h/AC+880℃/24 h/AC 6.54 49.04 43.50 2.49 1.56 269.78 82.28
980℃/2 h/AC+900℃/24 h/AC 5.71 47.51 46.78 3.81 1.43 273.65 88.08
1200℃/2 h/FC+760℃/14 h/AC - - - - - 200.00
Table 2  Effect of aging heat treatment on phase composition, size and rupture life at 650℃ of PM Ti2AlNb alloys
Aging treatment Vm(α2)/% Vm(B2)/% Vm(O)/% r(α2)/μm r(O)/μm λ(O)/nm
L/650℃/360 MPa ----- +++ ++ ++++ +++++
Table 3  Influence factors of rupture life of PM Ti2AlNb alloy at elevated temperature
1 D. Banerjee, A. K. Gogia, T. K. Nandy, V. A. Joshi,A new ordered orthorhombic phase in a Ti3Al-Nb alloy, Acta Metallurgica, 36(4), 871(1988)
2 ZHANG Shangzhou,Effect of carbon on microstructure of Ti-60 high-temperature titanium alloy, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2004)
2 (张尚洲,碳对Ti-60高温钛合金组织演变的影响, 博士学位论文, 中国科学院金属研究所(2004))
3 C. Leyens, M. Peters,translated by CHEN Zhenhu,et al, transl, Titanium and Titanium Alloy (Beijing, Chemical Industry Press, 2005)p.52
3 (莱恩斯, 皮特尔斯著, 陈振华等译, 钛与钛合金(北京, 化学工业出版社, 2005)p.52)
4 C. J. Boehlert, B. S. Majumdar, V. Seetharaman, D. B. Miracle, Part I. The microstructural evolution in Ti-Al-Nb O+BCC orthorhombic alloys, Metallurgical and Materials Transactions A, 30, 2305(1999)
5 ZHANG Jianwei,LI Shiqiong, LIANG Xiaobo, CHENG Yunjun, Research and application of Ti3AlNb and Ti2AlNb based alloys, The Chinese Journal of Nonferrous Metals, 20(special 1), s338(2010)
5 (张建伟, 李世琼, 梁晓波, 程云君, Ti3Al和Ti2AlNb基合金的研究和应用, 中国有色金属学报, 20(special 1), s338(2010))
6 FENG Aihan,LI Bobo, SHEN Jun, Recent advances on Ti2AlNb-based alloys, Journal of Materials and Metallurgy, 10(1), 34(2011)
6 (冯艾寒, 李渤渤, 沈 军, Ti2AlNb基合金的研究进展, 材料与冶金学报, 10(1), 34(2011))
7 SHEN Jun,FENG Aihan, Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys, Acta Metallurgica Sinica, 49(11), 1290(2013)
7 (沈 军, 冯艾寒, Ti2AlNb基合金微观组织调制及热成形研究进展, 49(11), 1290(2013))
8 L. Xu, C. G. Bai, D. Liu, W. Sun, D. J. Yu, Y. Y. Cui, R. Yang, Processing and properties of gamma TiAl sheet from atomized powder, in: Structural Aluminides for Elevated Temperature Applications, edited by Y. W. Kim, D. G. Morris, R. Yang and C. Leyens (TMS, Warrendale, PA, 2008) p.179
9 Fritz Appel, Jonathan D. H. Paul, Michael oehring, Gamma Titanium Aluminide Alloys Science and Technology (Germany, Wiley-VCH Verlag & Co. KGaA, 2011) p.521
10 WANG Gang,An investigation of the fabrication and high temperature deformation behavior of P/M TiAl alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2011)
10 (王 刚, 粉末冶金TiAl合金制备及高温变形行为研究, 博士学位论文, 中国科学院金属研究所(2011))
11 WANG Yong,The study on alloying hot deformation behaviors and mechanical properties of Ti2AlNb based alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2011)
11 (王 永,Ti2AlNb基合金的合金化、热加工及力学性能研究, 博士学位论文, 中国科学院金属研究所(2011))
12 WU Bo,Preparation, microstructure and mechanical properties of Ti2AlNb based alloys, PhD thesis, Beijing Nonferrous Metal Research Institute (2002)
12 (吴 波,Ti2AlNb基合金的制备、组织和力学性能的研究, 博士学位论文, 北京有色金属研究总院(2002))
13 WU Jun,XU Lei, LEI Jiafeng, LIU Yuyin, Preparation of powder metallurgy TA7 ELI alloy and its interface reaction layer, The Chinese Journal of Nonferrous Metals, 20(special 1), s300(2010)
13 (邬 军, 徐 磊, 雷家峰, 刘羽寅, 粉末冶金TA7 ELI 合金的制备及其界面反应层, 中国有色金属学报, 20(special 1), s300(2010))
14 CHENG Wenxiang,XU Lei, LEI Jiafeng, LIU Yuyin, YANG Rui, Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder, The Chinese Journal of Nonferrous Metals, 23(2), 363(2013)
14 (程文祥, 徐 磊, 雷家峰, 刘羽寅, 杨 锐,粉末粒度偏析对Ti-5Al-2.5Sn ELI 粉末合金拉伸性能的影响, 中国有色金属学报, 23(2), 363(2013))
15 HU Hanqi, Fundamentals of Solidification (Second Edition)(Beijing, Machinery Industry Press, 2000) p.255
15 (胡汉起, 金属凝固原理(第2版)(北京, 机械工业出版社, 2000) p.255)
16 CHENG Wenxiang,Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders, Master thesis, Institute of Metal Research, Chinese Academy of Sciences (2013)
16 (程文祥,Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究, 硕士学位论文, 中国科学院金属研究所(2013))
17 Y. T. Lee, H. Schurmann, K. J. Grundhoff, M. Peters,Effect of degassing treatment on microstructure and mechanical properties of P/M Ti-6Al-4V, Powder Metallurgy International, 22(1), 11(1990)
18 WANG Shaogang,WANG Sucheng, ZHANG Lei, Application of high resolution transmission X-ray tomography in material science, Acta Metallurgica Sinica, 49(8), 902(2013)
18 (王绍钢, 王苏程, 张 磊, 高分辨透射X射线三维成像在材料科学中的应用, 金属学报, 49(8), 902(2013))
19 H. Jiang, K. Zhang, F. A. Garcia-Pastor, M. H. Loretto, D. Hu, P. J. Withers, M. Preuss, X. Wu, Microstructure and properties of hot isostatically pressed powder and extruded Ti25V15Cr2Al0.2C, Materials Science and Technology, 27(8), 1244(2011)
20 L. A. Bendersky,Modulated two-domain structure of the O phase formed in the Ti-25Al-12.5Nb (at%) alloy, Scripta Metallurgica et Materialia, 29(12), 1645(1993)
21 X. Ren, M. Hagiwara,Displacive precursor phenomena in Ti-22Al-27Nb intermetallic compound prior to diffusional transformation, Acta Materialia, 49(19), 3978(2001)
22 Peng Jihua,Li Shiqiong, Mao Yong, Sun Xunfang, Phase transformation and microstructures in Ti-Al-Nb-Ta system, Materials Letters, 53(1-2) , 59(2002)
23 J. Kumpfert, W. A. Kaysser,Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution, Z. Metallkd, 92, 134(2001)
24 A. K. Gogia, T. K. Nandy, D. Banerjee, T. Carisey, J. L. Strudel & J. M. Franchet,Microstructure and mechanical properties of orthorhombic alloys in the Ti-Al-Nb system, Intermetallics, 6(7-8), 746(1998)
25 SI Shoukui, SUN Xijing, Mathematical Modeling Algorithms and Applications (Beijing, National Defense Industry Press, 2011) p.290
25 (司守奎, 孙玺菁, 数学建模算法与应用 (北京, 国防工业出版社, 2011) p.290)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!