Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 89-94    DOI: 10.11901/1005.3093.2021.664
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film
MA Yizhou1, ZHAO Qiuying1, YANG Lu2, QIU Jinhao1()
1.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.College of Mechanics and Materials, Hohai University, Nanjing 210098, China
Cite this article: 

MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film. Chinese Journal of Materials Research, 2023, 37(2): 89-94.

Download:  HTML  PDF(5817KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyimide (PI) and polyvinylidene fluoride (PVDF) were dissolved in N, N-dimethylformamide (DMF) separately, and the two solutions were blended, then the blending was dropped gradually into a mixture of alcohol and pure water to generate precipitated floccules. Finally, the floccule was collected and dried, then hot-pressed to prepare the all-organic composite film of thermoplastic polyimide/polyvinylidene fluoride. The compatibility, crystallization behavior, and energy storage performance of the composite film were characterized by means of SEM, XRD, DSC, dielectric and ferroelectric tests. It follows that the PI/PVDF film prepared by this method is compact and uniform with only few voids. The addition of PI promotes the formation of γ-phase, but has little effect on the breakdown performance of PVDF film, while obviously improves its energy storage performance. When the addition amount of PI is 5%, a high energy storage density of 6.52 J·cm-3 can be generated by an electric field of 300 MV·m-1, which is about 1.4 times that of pure PVDF film in the same condition.

Key words:  organic polymer materials      energy storage      hot-pressing      PI      PVDF     
Received:  02 December 2021     
ZTFLH:  TB332  
Fund: National Key Research and Development Program of China(2021YFB3400100)
About author:  QIU Jinhao, Tel: (025)84891123, E-mail: qiu@nuaa.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.664     OR     https://www.cjmr.org/EN/Y2023/V37/I2/89

Fig.1  Preparation of PI/PVDF composite film
Fig.2  Cross-sectional SEM of PI/PVDF composite film (a~e) and SEM element mapping of the 20/80 component (f~i)
Fig.3  XRD patterns of PI/PVDF composite film
Fig.4  DSC curve and crystallinity of PI/PVDF composite film (a) The melting DSC traces of samples, (b) Crystallinity of samples
Fig.5  Dielectric and ferroelectric performance of PI/PVDF composite film (a) room temperature dielectric constant εr and dielectric loss tanδ versus frequency, (b) weibull distribution, (c) D-E loops, (d) discharged energy density and charge-discharge efficiencies
1 Chi Q G, Yin C, Zhang T D, et al. Study on energy storage properties of PMMA/PVDF based composites filled with core-shell nanofibers [J]. Proc. Chin. Soc. Electrical Eng., 2021, 41(12): 4333
迟庆国, 殷 超, 张天栋 等. 核壳结构纳米纤维掺杂PMMA/PVDF基复合介质的储能特性研究 [J]. 中国电机工程学报, 2021, 41(12): 4333
2 Yang M Z, Jiang J Y, Shen Y. Recent progress in dielectric energy storage materials with high energy density [J]. J. Chin. Cerami. Soc., 2021, 49(7): 1249
杨敏铮, 江建勇, 沈 洋. 高能量密度介电储能材料研究进展 [J]. 硅酸盐学报, 2021, 49(7): 1249
3 Wang Z, Kong M L, Yi Z H, et al. Study on energy storage performance of ternary TiO2/MXene/PVDF nanocomposite films enhanced by adding low concentration of MXene [J]. J. Shaanxi Univ. Sci. Technol., 2021, 39(02): 112
王 卓, 孔梦蕾, 易志辉 等. 低浓度MXene填充增强三元TiO2/MXene/PVDF纳米复合膜的储能性能研究 [J]. 陕西科技大学学报, 2021, 39(02): 112
4 Zhang H, Heng T T, Fang Z G, et al. High-energy-density ceramic/PVDF-based nanocomposites dielectrics [J]. Acta Mater. Compos. Sin., 2021, 38(7): 2107
张 慧, 衡婷婷, 房正刚 等. 高储能陶瓷/PVDF基复合电介质材料的研究进展 [J]. 复合材料学报, 2021, 38(7): 2107
5 Wu L Y, Wu Kai, Liu D Y, et al. Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets [J]. J. Mater. Chem. A, 2018, 6: 7573
doi: 10.1039/C8TA01294F
6 Zhang X, Shen Y, Zhang Q H, et al. Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO3@TiO2 Nanofibers by Atomic-Scale Interface Engineering [J]. Adv. Mater., 2015, 27: 819
doi: 10.1002/adma.201404101
7 Ma Y, Tong W S, Wang W J, et al. Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties [J]. Compos. Sci. Technol., 2018, 168: 397
doi: 10.1016/j.compscitech.2018.10.009
8 Li W J, Li J J, Zhang Z C. Energy Storage Properties of Poly(vinylidene fluoride)-based Copolymers [J]. Polymer B., 2011, (12): 56
李文静, 李俊杰, 张志成. 聚偏氟乙烯基含氟聚合物介电和储能研究进展 [J]. 高分子通报, 2011, (12): 56
9 Yang C Y, Sun M Q, Wang X, et al. A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@π-Conjugated Polymer Film Electrodes [J]. ACS Sustain. Chem. Eng., 2015, 3: 2067
doi: 10.1021/acssuschemeng.5b00334
10 Han Y X, Shen M X, Xu Y P, et al. Synchronously promoted discharged energy density and discharged efficiency in PVDF films through a linear dielectric polymer PP blending approach [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6249
doi: 10.1007/s10854-021-05340-8
11 Dong J F, Deng X L, Niu Y J, et al. Research progress of polymer based dielectrics for high-temperature capacitor energy storage [J]. Acta Phy. Sin., 2020, 69: 217701
董久锋, 邓星磊, 牛玉娟 等. 面向高温介电储能应用的聚合物基电介质材料研究进展 [J]. 物理学报, 2020, 69: 217701
12 Chen X Z. Manipulating microstructures and electric properties in PVDF-based multifunctional ferroelectric polymers [D]. Nanjing: Nanjing University, 2013
陈相仲. 多功能铁电共聚物微结构的调控及其电性能的调制 [D]. 南京: 南京大学, 2013
13 Yuan C, Zhou Y, Zhu Y J, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage [J]. Nat. Commun., 2020, 11: 3919
doi: 10.1038/s41467-020-17760-x pmid: 32764558
14 Yang L, Zhao Q Y, Chen K N, et al. Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres [J]. Compos. Part A-Appl. S., 2020, 132: 105820
doi: 10.1016/j.compositesa.2020.105820
15 Wang J, Liu S H, Chen C Q, et al. Interface modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite [J]. Acta Phys. Sin., 2020, 69: 217702
doi: 10.7498/aps.69.20201031
王 娇, 刘少辉, 陈长青 等. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能 [J]. 物理学报, 2020, 69: 217702
16 Li Y, Liu X F, Wei M, et al. Preparation and properties of polyphenylthiourea-poly(vinylidenefluride) composites modified by do-pamine [J]. Acta Mater. Compos. Sin., 2019, 36(8): 1787
李 圆, 刘晓芳, 魏 铭 等. 多巴胺改性聚苯硫脲与聚偏氟乙烯共混复合材料的制备与性能 [J]. 复合材料学报, 2019, 36(8): 1787
17 Mao X. Study on preparation and dielectric properties of polyimide-based all-organic composite materials [D]. Chengdu: University of Electronic Science and Technology of China, 2020
毛 欣. 聚酰亚胺基全有机复合材料的制备及其介电性能研究 [D]. 成都: 电子科技大学, 2020
18 Yang L, Bao H, Dai Y, et al. Poly(acrylonitrile butadiene styrene)/poly(vinylidene fluoride) binary blends films with superior breakdown strength and discharge efficiency [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(13): 17230
doi: 10.1007/s10854-021-06200-1
19 Luo H, Zhou X F, Ellingford C, et al. Interface design for high energy density polymer nanocomposites [J]. Chem. Soc. Rev., 2019, 48: 4424
doi: 10.1039/c9cs00043g pmid: 31270524
20 Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications [J]. Prog. Polym. Sci., 2014, 39: 683
doi: 10.1016/j.progpolymsci.2013.07.006
21 Zhu L. Exploring strategies for high dielectric constant and low loss polymer dielectrics [J]. J. Phys. Chem. Lett., 2014, 5: 3677
doi: 10.1021/jz501831q pmid: 26278736
22 Salimi A, Yousefi A A. FTIR studies of β-phase crystal formation in stretched PVDF films [J]. Polym. Test., 2003, 22 :699
doi: 10.1016/S0142-9418(03)00003-5
23 Rinaldo G J. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions [J]. J. Appl. Polym. Sci., 2006, 100: 3272
doi: 10.1002/app.23137
24 Yang L. The fabrication and electric properties of poly(vinylidene fluoride)-based ferroelectric composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
杨 路. 聚偏氟乙烯基铁电复合材料的制备及其电性能研究 [D]. 南京: 南京航空航天大学, 2017
25 Zhao Q Y, Yang L, Peng Q R, et al. Achieving superior energy density in ferroelectric P(VDF-HFP) through the employment of dopamine-modified MOFs [J]. Compos. Sci. Technol., 2021, 201: 108520
doi: 10.1016/j.compscitech.2020.108520
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[5] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[6] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[7] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[8] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] WEI Lin, ZHOU Sigeng, Naicheng SHENG, YU Jinjiang, HOU Guichen, WANG Biao, QUAN Jia, ZHOU Yizhou, SUN Xiaofeng, KANG Yong. Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys[J]. 材料研究学报, 2023, 37(1): 29-38.
[13] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
No Suggested Reading articles found!