Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 199-204    
  研究论文 本期目录 | 过刊浏览 |
杂原子MCM--41分子筛的合成和催化性能
周华锋1;2 ;  杨永进1;  张劲松1
1.中国科学院金属研究所 沈阳 110016
2.沈阳化工学院应用化学学院 沈阳 110142
Synthesis of MCM–41 mesoporous molecular sieves containing heteroatoms and their catalytic activity
ZHOU Huafeng 1;2;   YANG Yongjin1;    ZHANG Jinsong1 
1.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2.School of Applied Chemistry; Shenyang Institute of Chemical Technology; Shenyang 110142
引用本文:

周华锋 杨永进 张劲松. 杂原子MCM--41分子筛的合成和催化性能[J]. 材料研究学报, 2009, 23(2): 199-204.
, , . Synthesis of MCM–41 mesoporous molecular sieves containing heteroatoms and their catalytic activity[J]. Chin J Mater Res, 2009, 23(2): 199-204.

全文: PDF(845 KB)  
摘要: 

采用水热合成法合成了金属原子(Zn, Ni, Fe, Al, Cu, Ce)掺杂的MCM--41介孔分子筛(简称T--MCM--41), 并将其应用于邻苯二甲酸二(2--乙基己)酯(DOP)的合成反应, 研究了不同原子的掺杂对T--MCM--41的结构、比表面积和孔径、酸性及催化性能的影响. 结果表明, 所制备的T--MCM--41仍然具有六方有序排列结构, 比表面积较高(550--900 m2/g)、孔径大(3 nm左右), 杂原子的引入使T--MCM--41产生了酸中心, 从而使其对DOP的合成具有很好的催化活性和选择性. 用T--MCM--41(T=Zn, Fe, Al, Cu)催化DOP的合成反应, 在5 h的反应时间内苯酐的转化率可以达到95.5%以上, DOP的选择性可达到96.5%以上. T--MCM--41催化剂具有很好的稳定性, Al--MCM--41在重复使用5次后仍具有较好的催化活性.

关键词 无机非金属材料介孔分子筛MCM--41邻苯二甲酸二(2--乙基己)酯    
Abstract

MCM–41 mesoporous molecular sieves containing heteroatoms (Zn, Ni, Fe, Al, Cu, Ce) (T–MCM–41) were synthesized by direct hydrothermal process and were applied in the synthesis of dioctyl phthalate (DOP) in this paper. The effects of different heteroatoms incorporation on structure, specific surface area and pore volume, aciditity and catalytic activity of T–MCM–41 were investigated. The results show that T–MCM–41 which still remains the well–ordered hexagonal mesostructure of MCM–41 has high surface area (550–900 m2/g), large pore diameter (∼3 nm). Meanwhile, it has high catalytic activity and selectivity in DOP synthesis because heteroatoms incorporation can produce acid centers. When T–MCM– 41 (T=Zn, Fe, Al, Cu) is used as the catalyst, the conversion of phthalic anhydride (PA) reaches above 95.5% and DOP selectivity reaches above 96.5% in 5 h. Moreover, T–MCM–41 has good stability and Al–MCM–41 holds good catalytic activity after being reused five times.

Key wordsinorgnic non–metallic materials    mesoporous molecular sieve    MCM–41    dioctyl phthalate
收稿日期: 2008-11-05     
ZTFLH: 

TB321

 
1 J.S.Beck, J.C.Vartuli, W.J.Roth, M.E.Leonowicz, C.T.Kresge, K.D.Schmitt, C.T–W.Chu, D.H.Olson, E.W.Sheppard, S.B.McCullen, J.B.Higgins, J.L.Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 114, 10834(1992) 2 ZHANG Jianguo, JIANG Qingzhe, ZHENG Chengguo, SONG Zhaozheng, KE Ming, Synthesis method and its influence factors of Si–MCM–41, Journal of China University of Petroleum (Natural Science Edition), 32(1), 113(2008) (张建国, 蒋庆哲, 郑成国, 宋昭峥, 柯明, Si--MCM--41的合成及其影响因素, 中国石油大学学报(自然科学版),  32(1), 113(2008)) 3 MENG Huadong, ZHANG Juntao, DING Liqin, LIANG Shengrong, WANG Xiaoquan, Synthesis and  characterization of mesoporous molecular sieve Al–MCM–41, Journal of Xian Shiyou University (Natural Science Edition), 22(3), 104(2007) (孟华东, 张君涛, 丁丽芹, 梁生荣, 王小泉, Al--MCM--41介孔分子筛的合成与表征, 西安石油大学学报(自然科学版),  22(3), 104(2007)) 4 Y.R.Wang, N.C.Lang, A.Tuel, Nature and acidity of aluminum species Al MCM–41 with a high aluminum content (Si/Al=1.25), Microporous and Mesoporous Materials, 93, 46(2006) 5 QIAO Kui, ZHANG Fumin, PAN Duoli, ZHANG Niaofei, JIAN Panming, Synthesis, characterization and catalytic oxidation performance of high Ti–containing Ti–MCM–41 molecular sieves, Chinese Journal of Inorgnic Chemistry, 24(5), 748(2008) (乔亏, 张富民, 潘多丽, 张鸟飞, 菅盘铭, 高钛Ti--MCM--41分子筛的合成、表征与催化氧化性能考察, 无机化学学报,  24(5), 748(2008)) 6 S.Udayakumar, A.Pandurangan, P.K.Sinha, Para–selective ethylation of phenol with diethyl carbonate over mesoporous Al–MCM–41 molecular sieves, Applied Catalysis A: General, 272, 267(2004) 7 M.J.B.Souza, A.S.Araujo, A.M.G. Pedrosa, B.A.Marinkovic, P.M.Jardim, E.M.Jr., Textural features of highly ordered Al–MCM–41 molecular sieve studied by X–ray diffraction, nitrogen adsorption and transmission electron microscopy, Materials Letters, 60, 2682(2006) 8 C.Blanco, C.Pesquera, F.Gonz z lez, Synthesis and characterization of MCM–41 with different Si/Al molar ratios and different silicon sources. Studies in Surface Science and Catalysis, 154, 432(2004) 9 R.Wojcieszak, S.Monteverdi, M.Mercy, I.Nowak, M.Ziolek, M.M.Bettahar, Nickel containing MCM–41 and Al MCM–41 mesoporous molecular sieves: characteristics and activity in the hydrogenation of benzene, Applied Catalysis A: General, 268, 241(2004) 10 V.Parvulescu, B.L.Su, Iron, cobalt or nickel substituted MCM–41 molecular sieves for oxidation of hydrocarbons, Catalysis Today, 69, 315(2001) 11 R.R.Sever, R.Alcala, J.A.Dumesic, T.W.Root, Vapor–phase silylation of MCM–41 and Ti–MCM–41, Microporous and Mesoporous Materials, 66(1), 53(2003) 12 CUI Rong, LIU Xiaoqin, SHAN Jiahui, Preparation of Ce–MCM–41 adsorbent and its performance in model gasofine desulfurization, Natural Gas Chemical Engineering, 33(2), 11(2008) (崔榕, 刘晓勤, 单佳慧, Ce--MCM--41分子筛吸附剂的制备及其在模拟汽油脱硫中的性能, 天然气化工, 33(2), 11(2008)) 13 KONG Yan, XU Xinjie, WU Yong, ZHANG Rui, WANG Jun, Effect of promoters on the catalytic activity of MCM– 41 with high copper content in benzene hydroxylation, Chinese Journal of Catalysis, 29(4), 385(2008) 14 C.Mahendiran, P.Sangeetha, P.Vijayan, S.J.Sardhar Basha, K.Shanthi, Vapour phase oxidation of tetralin over Cr and Fe substituted MCM–41 molecular sieves, Journal of Molecular Catalysis A: Chemical, 275, 84(2007) 15 S.S.Bhoware, A.P.Singh, Characterization and catalytic activity of cobalt containing MCM–41 prepared by direct hydrothermal, grafting and immobilization methods, Journal of Molecular Catalysis A: Chemical, 266, 118(2007) 16 L.F.Chen, J.A.Wang, L.E.Norena, J.Aguilar, J.Navarrete, P.Salas, J.A.Montoya, P.Del Angel, Synthesis and physicochemical properties of Zr–MCM–41 mesoporous molecular sieves and Pt/H3PW12O40/Zr–MCM–41 catalysts, Journal of Solid State Chemistry, 180, 2958(2007) 17 JIANG Pingping, Lu Guanzhong, Development of solid catalyst in catalytic synthesis of DOP, Chemical Industry and Engineering Process, 21(5), 328(2002) (蒋平平, 卢冠忠, 固体酸催化合成邻苯二甲酸二辛酯, 化工进展,  21(5), 328(2002)) 18 F.T.Sejidov, Y.Mansoori, N.Goodarzi, Esterification reaction using solid heterogeneous acid catalysts under solvent–less condition, Journal of Molecular Catalysis A: Chemical, 240, 186(2005) 19 M.Ziolek, I.Nowak, B.Kilos, I.Sobczak, P.Decyk, M.Trejda, J.C.Volta, Template synthesis and characterisation of MCM–41 mesoporous molecular sieves containing various transition metal elements-TME (Cu, Fe, Nb, V, Mo), Journal of Physics and Chemistry of Solids, 65, 571(2004) 20 S.Ajaikumar, A.Pandurangan, Esterification of alkyl acids with alkanols over MCM–41 molecular sieves: Influence of hydrophobic surface on condensation reaction, Journal of Molecular Catalysis A: Chemical, 266, 1(2007) 21 M.Bhagiyalakshmi, K.Shanmugapriya, M.Palanichamy, B.Arabindoo and V.Murugesan, Esterification of maleic anhydride with methanol over solid acid catalysts: a novel route for the production of heteroesters, Applied Catalysis A: General, 267, 77(2004) 22 DOU Maofeng, J1N Shengming, FUling, CHANG Yan, GUAN Haoyuan, YANG Min, Preparation and structure of mesoporous molecular sieves Ti–MCM–4l, Journal of the Chinese Ceramic Society, 36(1), 65(2008) (豆茂峰, 金胜明, 付英, 常燕, 关豪元, 杨敏, 介孔分子筛Ti--MCM--41的制备和结构, 硅酸盐学报,   36(1), 65(2008)) 23 R.Luque, J.M.Campelo, D.Luna, J.M.Marinas, A.A.Romero, NH4F effect in post–synthesis treatment of Al–MCM–41 mesoporous materials, Microporous and Mesoporous Materials, 84, 11(2005) 24 HUANG Shiyong, WANG Haitao, SONG Yanfen, GAO Wenyi, FAN Lirong, LIAN Piyong, Synthesis of mesoporous MCM–41 molecular sieves containing heteroatoms and study of cyclohexane oxidation, Fine Chemicals, 21(1), 41(2004) (黄世勇, 王海涛, 宋艳芬, 高文艺, 樊丽荣, 连丕勇, 杂原子MCM --41分子筛的合成及对环己烷氧化的研究, 精细化工,  21(1), 41(2004)) 25 LI Fuxiang, ZHANG Xiangdi, LI Ruifeng, XIE Kechang, Synthesis and characterization of mesoporous Zr–MCM–41, Journal of Fuel Chemidtry and Technology, 32(4),471(2004) (李福祥, 张香娣, 李瑞丰, 谢克昌, Zr--MCM--41的合成及其表征, 燃料化学学报,   32(4), 471(2004)) 26 WU Shujie, HUANG Jiahui, WU Tonghao, SONG Ke, WANG Hongsu, XING Lihong, XU Haiyan, XU Ling, GUAN Jingqi, KAN Qiubin, Synthesis, characterization, and catalytic performance of mesoporous Al–SBA–15 for Tert– butylation of phenol, Chinese Journal of Catalysis, 27(1), 9(2006)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.