Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (10): 755-764    DOI: 10.11901/1005.3093.2024.448
  研究论文 本期目录 | 过刊浏览 |
菇娘果外皮衍生多孔碳的制备及其应用
王园园(), 夏莹京, 董省身, 王雪芹, 柳艳修, 宋华, 刘社田()
东北石油大学化学化工学院 大庆 163318
Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk
WANG Yuanyuan(), XIA Yingjing, DONG Xingshen, WANG Xueqin, LIU Yanxiu, SONG Hua, LIU Shetian()
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
引用本文:

王园园, 夏莹京, 董省身, 王雪芹, 柳艳修, 宋华, 刘社田. 菇娘果外皮衍生多孔碳的制备及其应用[J]. 材料研究学报, 2025, 39(10): 755-764.
Yuanyuan WANG, Yingjing XIA, Xingshen DONG, Xueqin WANG, Yanxiu LIU, Hua SONG, Shetian LIU. Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk[J]. Chinese Journal of Materials Research, 2025, 39(10): 755-764.

全文: PDF(9808 KB)   HTML
摘要: 

将菇娘果外皮(PLC)在400 ℃预碳化后用不同浓度的KOH溶液(活化剂)活化,制备出电极材料PLCPC-x (x为KOH与预碳化材料的质量比)。使用扫描电子显微镜(SEM)、透射电镜(TEM)、比表面积分析仪、X射线衍射仪(XRD)、Raman光谱仪、能谱仪(EDS)以及X射线光电子能谱仪(XPS)等手段对其表征,研究了活化剂的添加量对PLCPC-x材料的形貌、孔道结构以及电化学性能的影响。结果表明,PLCPC-3具有发达的多孔级3D孔道结构,其比表面积高达2703.75 m2·g-1。在三电极体系中,电流密度为0.5 A·g-1时PLCPC-3的质量比电容为349.7 F·g-1 (6 mol·L-1 KOH),电流密度为20 A·g-1时电容保持率为78.9%。在两电极体系中构建的对称超级电容器(PLCPC-3//PLCPC-3)功率密度为250 W·kg-1时能量密度约为9.0 Wh·kg-1。经历12000次循环后,其比电容为初始值的96.7%。

关键词 复合材料超级电容器多孔碳材料电化学性能    
Abstract

The calyx husk of Physalis Peruviana L. was firstly pre-carburized at 400 oC to acquire carbon, and then porous carbon materials PLCPC-x (the ratio x represents the mass ratio of KOH to the pre-carbonized material) were prepared with the pre-carburized calyx husk as raw material and KOH solution as activating agent. The results showed that PLCPC-3 possessed a well-developed hierarchical 3D porous structure and a high specific surface area of up to 2703.75 m²·g-¹. By means of testing in a three-electrode set with electrolyte of 6 mol·L-1 KOH solution, it exhibited a high specific capacitance of 349.7 F·g-1 at 0.5 A·g-1 and a high capacitance retention rate of 78.9% at 20 A·g-¹. In a two-electrode system, the constructed symmetric supercapacitor achieved an energy density of approximately 9.0 Wh·kg-1 at a power density of 250 W·kg-1, retaining 96.7% of its initial capacitance after 12000 cycles.

Key wordscomposite    supercapacitor    porous carbon material    electrochemical performance
收稿日期: 2024-11-05     
ZTFLH:  TB332  
基金资助:国家自然科学基金(22278068)
通讯作者: 王园园,教授,wangyuanyuan2016@126.com,研究方向为电化学储能及器件
刘社田,教授,Shetian_liu@nepu.edu.cn,研究方向为环境污染物资源化处理
Corresponding author: WANG Yuanyuan, Tel: (0459)6504035, E-mail: wangyuanyuan2016@126.com
LIU Shetian, Tel: (0459)6503167, E-mail: Shetian_liu@nepu.edu.cn
作者简介: 王园园,女,1983年生,博士
图1  制备PLCPC-x衍生多孔碳材料的示意图
图2  PLCPC-x的SEM照片和EDS图
图3  PLCPC-3的TEM照片
图4  PLCPC-x的N2吸附/解吸等温曲线和孔径分布曲线
SampleSBETa / m2·g-1Smicb / m2·g-1Vtotc / cm3·g-1Vmicd / cm3·g-1
PLCPC-033.520.10.030.01
PLCPC-11617.31305.40.880.65
PLCPC-21969.31409.31.140.71
PLCPC-32703.81697.41.460.85
PLCPC-41708.91347.40.960.67
表1  PLCPC-x的比表面积与孔隙参数
图5  PLCPC-x的XRD谱和Raman谱
图6  PLCPC-3的XPS总谱以及C 1s和O 1s的高分辨XPS谱
图7  PLCPC-x 在扫描速率为50 mV·s-1时的CV曲线、电流密度为0.5 A·g-1时的GCD曲线以及在不同电流密度下的比电容、PLCPC-3 在不同扫描速率下的CV曲线和在不同电流密度下的GCD曲线、PLCPC-x的Nyquist图和Bode图、PLCPC-0和PLCPC-3在50 mV·s-1扫描速率下的总电荷存储的组成,以及在不同扫描速率下总电荷存储的组成
图8  PLCPC-3//PLCPC-3在6 mol·L-1 KOH电解质溶液中的电化学性能
MaterialActivatorElectrolyte

Specific

capacitance / F·g-1

Energy density / Wh·kg-1

Power density

/ W·kg-1

Cycling

stability

Reference
Cashew nut huskKOH

6 mol·L-1

KOH

305.2

(1 A·g-1)

11.2400

97.1%

4000 cycles

[45]
ChlorellaZnCl2-KOH

6 mol·L-1

KOH

339

(1 A·g-1)

8.47250

95.17%

10000 cycles

[46]
Willow catkinKOH

6 mol·L-1

KOH

298

(0.5 A·g-1)

21.0180

99.7%

10000 cycles

[47]
Coconut shellKOH

6 mol·L-1

KOH

317.0

(0.5 A·g-1)

13.3250

99.7%

10000 cycles

[48]
Sword bean shellsKOH

6 mol·L-1

KOH

369

(1 A·g-1)

12375

95.7%

10000 cycles

[49]
Corn huskK2CO3

0.5 mol·L-1

H2SO4

269

(0.25 A·g-1)

~10~10

99.5%

20000 cycles

[50]
Chinese fir sawdustNaOH

6 mol·L-1

KOH

260

(0.5 A·g-1)

15.9246

90%

5000 cycles

[51]
Orange peelKOH

6 mol·L-1

KOH

289

(5 A·g-1)

8.9499.7

93.6%

10000 cycles

[52]
Physalis Peruviana L. calyx huskKOH

6 mol·L-1

KOH

349.7

(0.5 A·g-1)

9250

96.7%

12000 cycles

This work
表2  部分碳材料的电化学性能[45~52]
[1] Subramanian B, Veerappan M, Rajan K, et al. Fabrication of hierarchical indium vanadate materials for supercapacitor application [J]. Global Chall., 2020, 4(11): 2000002
[2] Sharma S, Chand P. Supercapacitor and electrochemical techniques: A brief review [J]. Results Chem., 2023, 5: 100885
[3] Zhang C T, Xing B L, Huang G X, et al. Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation [J]. Mater. Rep., 2018, 32(7): 1088
[3] 张传涛, 邢宝林, 黄光许 等. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究 [J]. 材料导报, 2018, 32(7): 1088
[4] Wang J, Zhou J H, Zhao W Z. Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle [J]. Green Energy Intell. Transp., 2022, 1(2): 100028
[5] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104(10): 4245
[6] Satpathy S, Das S, Bhattacharyya B K. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors [J]. J. Energy Storage, 2020, 27: 101044
[7] Salleh N A, Kheawhom S, Hamid N A A, et al. Electrode polymer binders for supercapacitor applications: a review [J]. J. Mater. Res. Technol., 2023, 23: 3470
[8] Zhang G Y, Wang A, Ying H, et al. Research progress on biomass-based advanced carbon materials for energy storage [J]. Mod. Chem. Ind., 2023, 43(9): 24
[8] 张高月, 王 傲, 应 浩 等. 储能用生物质基先进碳材料的研究进展 [J]. 现代化工, 2023, 43(9): 24
[9] Valencia A, Muñiz-Valencia R, Ceballos-Magaña S G, et al. Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell [J]. Environ. Technol. Innovat., 2022, 25: 102076
[10] Li Y Z, Gupta R, Zhang Q Z, et al. Review of biochar production via crop residue pyrolysis: Development and perspectives [J]. Bioresour. Technol., 2023, 369: 128423
[11] Awogbemi O, Von Kallon D V. Application of biochar derived from crops residues for biofuel production [J]. Fuel Commun., 2023, 15: 100088
[12] Zhang Y L, Chen X G, Wang M Q, et al. Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(7): 3812
[12] 张亚林, 陈兴刚, 王梦倩 等. 生物质炭@MnO2基超级电容器电极材料研究进展 [J]. 复合材料学报, 2023, 40(7): 3812
[13] Song X Q, Lei X P, Fan K, et al. Research progress of biomass derived carbon in supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(3): 1328
[13] 宋晓琪, 雷西萍, 樊 凯 等. 基于生物质衍生炭在超级电容器中的研究进展 [J]. 复合材料学报, 2023, 40(3): 1328
[14] Yadav S P S, Bhandari S, Bhatta D, et al. Biochar application: A sustainable approach to improve soil health [J]. J. Agric. Food Res., 2023, 11: 100498
[15] Vaithyanathan V K, Goyette B, Rajagopal R. A critical review of the transformation of biomass into commodity chemicals: Prominence of pretreatments [J]. Environ. Challenges, 2023: 100700
[16] Antar M, Lyu D, Nazari M, et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization [J]. Renewable Sustainable Energy Rev., 2021, 139: 110691
[17] Song C L, Ren K, Teng Z C, et al. Preparation of activated carbon from unburned carbon in biomass fly ash and its supercapacitor performance [J]. J. Fuel Chem. Technol., 2021, 49(12): 1936
[17] 宋传林, 任 科, 滕召才 等. 生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究 [J]. 燃料化学学报(中英文), 2021, 49(12): 1936
[18] Zhang D Z, Zhang Y X, Liu H L, et al. Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes [J]. J. Phys. Chem. Solids, 2023, 178: 111318
[19] Wei X, Qiu B P, Xu L, et al. High performance hierarchical porous carbon derived from waste shrimp shell for supercapacitor electrodes [J]. J. Energy Storage, 2023, 62: 106900
[20] Dai Z, Ren P G, Guo Z Z, et al. Three-dimensional porous carbon materials derived from locust for efficient NOS co-doped supercapacitors by facile self-template and in-situ doping method [J]. Fuel Process. Technol., 2021, 213: 106677
[21] Erkaya T, Dağdemir E, Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream [J]. Food Res. Int., 2012, 45(1): 331
[22] Puente L A, Pinto-Muñoz C A, Castro E S, et al. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review [J]. Food Res. Int., 2011, 44(7): 1733
[23] Al-Olayan E M, El-Khadragy M F, Aref A M, et al. The potential protective effect of Physalis peruviana L. against carbon tetrachloride‐induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP‐9 expression [J]. Oxid. Med. Cell. Longev., 2014, 2014: 381413
[24] El-Beltagi H S, Mohamed H I, Safwat G, et al. Chemical composition and biological activity of Physalis peruviana L [J]. Gesunde Pflanz., 2019, 71(2): 113
[25] Yang L, Zheng H, Liu L, et al. N, O self-doped hierarchical porous carbon materials for high-performance super-capacitors [J]. Results Chem., 2021, 3: 100109
[26] Ding F F, Li J, Du H M, et al. Highly porous heteroatom doped-carbon derived from orange peel as electrode materials for high-performance supercapacitors [J]. Int. J. Electrochem. Sci., 2020, 15(6): 5632
[27] Ran F T, Yang X B, Xu X Q, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor [J]. Chem. Eng. J., 2021, 412: 128673
[28] Wang Y H, Liu R N, Tian Y D, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors [J]. Chem. Eng. J., 2020, 384: 123263
[29] Du W M, Zhang Z R, Du L G, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors [J]. J. Alloy. Compd., 2019, 797: 1031
[30] Tang D Y, Luo Y Y, Lei W D, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications [J]. Appl. Surf. Sci., 2018, 462: 862
[31] Gao S Y, Chen Y L, Fan H, et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors [J]. J. Mater. Chem., 2014, 2A(10): 3317
[32] Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework [J]. Nat. Chem., 2016, 8(7): 718
[33] Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors [J]. Nano Energy, 2018, 47: 547
[34] Yang H F, Sun X Y, Zhu H, et al. Nano-porous carbon materials derived from different biomasses for high performance supercapacitors [J]. Ceram. Int., 2020, 46(5): 5811
[35] Zhan Y B, Zhou H M, Guo F Q, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors [J]. J. Energy Storage, 2021, 34: 102180
[36] Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors [J]. Nano Energy, 2016, 27: 482
[37] Zou K X, Deng Y F, Chen J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors [J]. J. Power Sources, 2018, 378: 579
[38] Su X L, Cheng M Y, Fu L, et al. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins [J]. J. Power Sources, 2017, 362: 27
[39] Luo Z J, Lin N, Sun M C, et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors [J]. Carbon, 2021, 173: 910
[40] Tang J G, Guo Z Y, Kong X J, et al. Soybean meal-derived heteroatoms-doped porous carbons for supercapacitor electrodes [J]. Mater. Chem. Phys., 2022, 284: 126055
[41] Wang A, Sun K, Xu R T, et al. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation [J]. J. Cleaner Prod., 2021, 283: 125385
[42] Zhang Q, Wang J L, Deng M G. Preparation of porous carbon from buckwheat husk and its electrochemical properties [J]. Int. J. Electrochem. Sci., 2022, 17(11): 221145
[43] Wang D W, Lian Y, Fu H L, et al. Flexible porous carbon nanofibers derived from cuttlefish ink as self-supporting electrodes for supercapacitors [J]. J. Power Sources, 2024, 599: 234216
[44] Liang Y N, Zhou Y Q, Smith R L, et al. Ultra-thin highly-wrinkled graphene-like nanosheets for supercapacitor electrodes via 4-nitrocatechol and solvent-induced self-assembly [J]. Carbon, 2023, 204: 495
[45] Cai N, Cheng H, Jin H, et al. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors [J]. J. Electroanal. Chem., 2020, 861: 113933
[46] Lu C X, Yu Z S, Zhang X Y, et al. ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors [J]. Energy Sources Part A-Recovery Util. Environ. Eff., 2024, 46(1): 2212
[47] Li Y J, Wang G L, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors [J]. Nano Energy, 2016, 19: 165
[48] Zhao Y T, Mu J C, Wang Y Y, et al. Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor [J]. J. Mater. Sci.: Mater. Electron., 2023, 34(6): 527
[49] Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N Co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment [J]. Int. J. Hydrog. Energy, 2021, 46(63): 31927
[50] Lobato-Peralta D R, Duque-Brito E, Orugba H O, et al. Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage [J]. Diamond Relat. Mater., 2023, 138: 110176
[51] Yang X, Wang X Q, Yu X W, et al. In-situ N, P co-doped porous carbon derived from biomass waste for supercapacitors [J]. J. Electroanal. Chem., 2024, 972: 118646
[52] Li Y J, Zou X F, Li S Q, et al. Biomass-derived B/N/P co-doped porous carbons as bifunctional materials for supercapacitors and sodium-ion batteries [J]. J. Mater. Chem., 2024, 12: 18324
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[5] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[6] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[7] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[8] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[9] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[10] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[11] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[13] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[14] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[15] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.