|
|
高温回火对低碳中锰钢微观组织和力学性能的影响 |
展之德1, 刘琪琪1, 董敬文1,2, 祁震1, 罗小兵1, 柴锋1, 师仲然1( ) |
1 钢铁研究总院有限公司工程用钢研究院 北京 100081 2 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 |
|
Effect of Tempering Temperatures on Microstructure and Mechanical Property of a Test Low-carbon Medium-manganese Steel |
ZHAN Zhide1, LIU Qiqi1, DONG Jingwen1,2, QI Zhen1, LUO Xiaobing1, CHAI Feng1, SHI Zhongran1( ) |
1 Institute for Structul Steels, Central Iron and Steel Research Institute Company Limited, Beijing 100081, China 2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
展之德, 刘琪琪, 董敬文, 祁震, 罗小兵, 柴锋, 师仲然. 高温回火对低碳中锰钢微观组织和力学性能的影响[J]. 材料研究学报, 2025, 39(10): 765-776.
Zhide ZHAN,
Qiqi LIU,
Jingwen DONG,
Zhen QI,
Xiaobing LUO,
Feng CHAI,
Zhongran SHI.
Effect of Tempering Temperatures on Microstructure and Mechanical Property of a Test Low-carbon Medium-manganese Steel[J]. Chinese Journal of Materials Research, 2025, 39(10): 765-776.
[1] |
Li D C. The present situation and its development trend of hull structural steel [J]. Wuhan Shipbuild., 1995, (3): 28
|
[1] |
李大超. 船体结构钢的现状及其发展趋势 [J]. 武汉造船, 1995, (3): 28
|
[2] |
Du L X, Gao X H, Wu H Y, et al. Microstructure Control Theory and Performance of Low Carbon Medium Manganese Steel Plates [M]. Beijing: Metallurgical Industry Press, 2021
|
[2] |
杜林秀, 高秀华, 吴红艳 等. 低碳中锰钢板材组织控制理论及性能 [M]. 北京: 冶金工业出版社, 2021
|
[3] |
Wang G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production [J]. Steel Roll., 2019, 36(1): 1
|
[3] |
王国栋. 高质量中厚板生产关键共性技术研发现状和前景 [J]. 轧钢, 2019, 36(1): 1
|
[4] |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59(10): 4002
|
[5] |
Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31(7): 843
|
[6] |
Liu S L, Hu B, Li W, et al. Refined heterogeneous phase unit enhances ductility in quenched ultra-high strength steels [J]. Scr. Mater., 2021, 194: 113636
|
[7] |
Zhang H L, Mi P, Hao L H, et al. Evolution of toughening mechanisms in PH13-8Mo stainless steel during aging treatment [J]. Materials (Basel), 2023, 16(10): 3630
|
[8] |
Wang C J, Liang J X, Liu Z B, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering [J]. Acta Metall. Sin., 2016, 52(4): 385
|
[8] |
王长军, 梁剑雄, 刘振宝 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理 [J]. 金属学报, 2016, 52(4): 385
|
[9] |
Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (QP)-treated sheet steels [J]. Metall. Mater. Trans., 2014, 45A: 1892
|
[10] |
Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering [J]. Mater. Sci. Eng., 2014, 607A: 569
|
[11] |
Pan T. Study on microstructures and toughening mechanism of nine percent nickel cryogenic steel for LNG tanks [D]. Beijing: Central Iron Steel Research Institute, 2015
|
[11] |
潘 涛. 液化天然气工程用9%Ni钢低温韧化机理与精细结构研究 [D]. 北京: 钢铁研究总院, 2015
|
[12] |
Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing [J]. Mater. Sci. Eng., 2011, 528A(22-23): 6661
|
[13] |
Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q P) process: a critical assessment [J]. Acta Mater., 2008, 56(1): 16
|
[14] |
Glover A, Speer J G, De moor E. Tempering and austempering of double soaked medium manganese steels [J]. Front. Mater., 2021, 7: 622131
|
[15] |
Mueller J J, Glover A G, Matlock D K, et al. Austenite formation and manganese partitioning during double soaking of an ultralow carbon medium-manganese steel [J]. Steel Res. Int., 2023, 94: 2200947
|
[16] |
Gibbs P J, De Cooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel [J]. Mater. Sci. Eng., 2014, 609A: 323
|
[17] |
Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, 707A: 270
|
[18] |
Wang X, Xu Y B, Gao Y J, et al. Enhancing strength-ductility combination in a novel Cu-Ni bearing Q P steel by tailoring the characteristics of fresh martensite [J]. J. Mater. Res. Technol., 2023, 24: 9015
|
[19] |
Yang C F, Su H, Li L, et al. High-performance copper-precipitation-hardened ship hull steel [J]. Chin. J. Nonferrous Met., 2004, 14(1): 211
|
[19] |
杨才福, 苏 航, 李 丽 等. 高性能铜沉淀硬化船体钢 [J]. 中国有色金属学报, 2004, 14(1): 211
|
[20] |
Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel As-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55(6): 783
|
[20] |
张正延, 柴 锋, 罗小兵 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55(6): 783
|
[21] |
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
|
[22] |
Jiao Z B, Luan J H, Guo W, et al. Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel [J]. Mater. Res. Lett., 2017, 5(8): 562
|
[23] |
Li Z, Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels [J]. ISIJ Int., 2006, 46(1): 121
|
[24] |
Barik R K, Biswal S, Bhandari K K, et al. Micromechanics of cleavage fracture and the associated tongue formation in ferritic steel [J]. Mater. Sci. Eng., 2023, 885A: 145616
|
[25] |
Luo Z C, Liu R D, Wang X, et al. The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels [J]. Acta Mater., 2018, 150: 59
|
[26] |
Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels [J]. Acta Mater., 2007, 55: 6713
|
[27] |
Heo N H, Nam J W, Heo Y U, et al. Grain boundary embrittlement by Mn and eutectoid reaction in binary Fe-12Mn steel [J]. Acta Mater., 2013, 61(11): 4022
|
[28] |
Zhang G Y, Li Y, Huang L Y, et al. Process design and microstructure control of medium manganese steel with continuous yield and high strength yield ratio [J]. Acta Metall. Sin., 2024, 60(4): 443
|
[28] |
张光莹, 李 岩, 黄丽颖 等. 连续屈服、高强屈比中锰钢的工艺设计与组织调控 [J]. 金属学报, 2024, 60(4): 443
|
[29] |
Yang K, Li Y, Hong Z J, et al. The dominating role of austenite stability and martensite transformation mechanism on the toughness and ductile-to-brittle-transition temperature of a quenched and partitioned steel [J]. Mater. Sci. Eng., 2021, 820A: 141517
|
[30] |
Zhan Z D, Shi Z R, Wang Z M, et al. Effect of manganese on the strength-toughness relationship of low-carbon copper and nickel-containing hull steel [J]. Materials (Basel), 2024, 17(5): 1012
|
[31] |
Yang Y H, Zhang X J, Yuan S Q. Effect of reversed austenite on low temperature fracture mechanism of 9Ni steel [J]. Trans. Mater. Heat Treat., 2014, 35(9): 101
|
[31] |
杨跃辉, 张晓娟, 苑少强. 回转奥氏体对9Ni钢低温断裂机制的影响 [J]. 材料热处理学报, 2014, 35(9): 101
|
[32] |
Liu S, Xiong Z, Guo H, et al. The significance of multi-step partitioning: processing-structure -property relationship in governing high strength-high ductility combination in medium-manganese steels [J]. Acta Mater., 2017, 124: 159
|
[33] |
Mohapatra S, Poojari G, Satpathy B, et al. A comprehensive study on the effect of annealing temperature on the tensile and impact behavior of automotive-grade medium manganese steel (Fe-6.22Mn-0.18C) [J]. J. Mater. Eng. Perform, 2024, 33(11): 5348
|
[34] |
Wang J, Li W, Zhu X D, et al. Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels [J]. Mater. Sci. Eng., 2022, 832A: 142424
|
[35] |
Park M, Kang M S, Park G W, et al. The effects of recrystallization on strength and impact toughness of cold-worked high-Mn austenitic steels [J]. Metals, 2019, 9(9): 948
|
[36] |
Tsai Y T, Chang H T, Huang B M, et al. Microstructural characterization of Charpy-impact-tested nanostructured bainite [J]. Mater. Charact., 2015, 107: 63
|
[37] |
Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006
|
[37] |
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
|
[38] |
Li Z T, Chai F, Luo X B, et al. Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation [J]. Mater. Rep., 2020, 34(3): 06132
|
[38] |
李振团, 柴 锋, 罗小兵 等. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响 [J]. 材料导报, 2020, 34(3): 06132
|
[39] |
Zhan Z D, Liu W Y, Yang Y, et al. Effects of temperature on the microstructural evolution and mechanical properties of copper - bearing medium manganese steel during tempering [J]. Mater. Des., 2024, 245: 113273
|
[40] |
Wang C Y, Shi J, Cao W Q, et al. Study on uniaxial tension properties of steel treated by Q P process [J]. Trans. Mater. Heat Treat., 2010, 31(6): 77
|
[40] |
王存宇, 时 捷, 曹文全 等. Q P工艺处理钢的单轴拉伸性能研究 [J]. 材料热处理学报, 2010, 31(6): 77
|
[41] |
Zhan Z D, Wang Z M, Shi Z R, et al. Effect of chromium and molybdenum addition on the matching mechanism of strength-ductility-toughness of low carbonmedium manganese steel [J]. J. Mater. Res. Technol., 2024, 31: 2103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|