Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (10): 765-776    DOI: 10.11901/1005.3093.2024.464
  研究论文 本期目录 | 过刊浏览 |
高温回火对低碳中锰钢微观组织和力学性能的影响
展之德1, 刘琪琪1, 董敬文1,2, 祁震1, 罗小兵1, 柴锋1, 师仲然1()
1 钢铁研究总院有限公司工程用钢研究院 北京 100081
2 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
Effect of Tempering Temperatures on Microstructure and Mechanical Property of a Test Low-carbon Medium-manganese Steel
ZHAN Zhide1, LIU Qiqi1, DONG Jingwen1,2, QI Zhen1, LUO Xiaobing1, CHAI Feng1, SHI Zhongran1()
1 Institute for Structul Steels, Central Iron and Steel Research Institute Company Limited, Beijing 100081, China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

展之德, 刘琪琪, 董敬文, 祁震, 罗小兵, 柴锋, 师仲然. 高温回火对低碳中锰钢微观组织和力学性能的影响[J]. 材料研究学报, 2025, 39(10): 765-776.
Zhide ZHAN, Qiqi LIU, Jingwen DONG, Zhen QI, Xiaobing LUO, Feng CHAI, Zhongran SHI. Effect of Tempering Temperatures on Microstructure and Mechanical Property of a Test Low-carbon Medium-manganese Steel[J]. Chinese Journal of Materials Research, 2025, 39(10): 765-776.

全文: PDF(24295 KB)   HTML
摘要: 

将低碳中锰钢Fe-4Mn-3.5Ni-2Cu-0.05C-0.018Nb-0.018Ti在860 ℃淬火1 h后水冷,再分别在600、640和670 ℃回火2 h,然后分别用JBN-300C摆锤冲击实验机和WE-300液压拉伸实验机进行冲击实验和拉伸实验。结果表明,在不同温度回火的实验钢,其微观组织均由回火马氏体/铁素体+逆转变奥氏体+新鲜马氏体构成。随着回火温度的提高实验钢的抗拉强度和加工硬化指数随之提高,屈服强度和低温冲击功降低。在600和640 ℃回火的实验钢,其抗拉强度的提高主要依赖相变诱导塑性效应生成的新鲜马氏体,其加工硬化性能随着回火温度的提高而改善。回火温度提高到670 ℃新鲜马氏体的含量显著提高,虽然加工硬化能力和抗拉强度进一步提高,但是实验钢变得硬而脆和颈缩提前,从而使其延伸率降低。低温冲击功降低的原因,一个是逆转变奥氏体机械稳定性降低和相变缓解应力集中的效果减弱,使裂纹形成功降低;另一个是孪晶和块状逆转变奥氏体数量的增多导致断裂模式转变为晶间断裂,裂纹易沿着孪晶界和原奥氏体晶界高速扩展而降低了裂纹扩展功。实验钢中Nb/TiC的析出,有助于晶粒细化。同时,回火温度的提高使富Cu相粗化,使实验钢的屈服强度显著降低。

关键词 金属材料中锰钢逆转变奥氏体孪晶富铜相    
Abstract

Hot rolled plates of a low-carbon medium-manganese test steel 4Mn (Fe-4Mn-3.5Ni-2Cu-0.05C-0.018Nb-0.018Ti, in mass fraction) were heated at 860 oC for 1 h and then water quenching, followed by tempering treated at 600, 640, and 670 °C for 2 h respectively. Next, the effect of tempering process on the microstructure and mechanical property of the steel plates was assessed via SEM+EBSD, XRD, TEM, pendulum impact testing machine and hydraulic tensile testing machine. The results indicate that the microstructure of the steels tempered at different temperatures is composed of tempered martensite/ferrite + reversed austenite + fresh martensite. With the increasing tempering temperature, the ultimate tensile strength and work hardening index increase sequentially, while the yield strength and low-temperature impact toughness decreases sequentially. For tempering at 600 and 640 oC, the increase in ultimate tensile strength is primarily due to the transformation-induced plasticity effect formed by a fresh martensite, with the improving work hardening capability of the steel gradually as the temperature rises. For tempering at 670 oC, the content of fresh martensite significantly increases, enhancing the work hardening capacity and further boosting the ultimate tensile strength. However, the steel becomes excessively hard and brittle, leading to premature necking and a reduction in elongation. The decrease in low-temperature impact toughness is due to two factors, on one hand the mechanical stability of reversed austenite decreases, weakening its ability to mitigate stress concentrations through transformation, resulting in a reduction in the energy required for crack initiation; on the other hand, the increase of twins and blocky reversed austenite leads to a shift in the fracture austenite grain boundaries, thereby reducing the crack propagation energy. The precipitation of Nb/TiC in steel can help refine the grain size. In addition, the Cu-rich phase coarsens with the increase of tempering temperature, significantly reducing the yield strength.

Key wordsmetallic materials    medium manganese steel    reversed austenite    twin crystal    copper-rich phase
收稿日期: 2024-11-25     
ZTFLH:  TG142  
基金资助:钢铁研究总院重大基金(23G60320ZD)
通讯作者: 师仲然,高级工程师,18001263520@126.com,研究方向为高强船体结构钢
作者简介: 展之德,男,1997年生,硕士
图 1  4Mn钢淬火和回火后的SEM照片
图 2  4Mn钢的EBSD像和逆转变奥氏体晶粒尺寸分布
图3  4Mn钢的XRD谱和逆转变奥氏体的含量
图4  在不同温度回火的4Mn钢的TEM照片
图5  在不同温度回火的4Mn钢的析出相及其EDS
图6  4Mn钢的工程应力-应变曲线
SampleRm / MPaRp0.2 / MPaA / %Rp0.2 / Rm
600 oC896 ± 0.5857 ± 3.023 ± 0.50.96
640 oC913 ± 6.0700 ± 9.025 ± 0.50.77
670 oC1114 ± 6.5654 ± 3.017 ± 0.50.59
表1  4Mn钢的拉伸性能
Sample-40 oC-60 oC-84 oC
KV2 / JSFA / %KV2 / JSFA / %KV2 / JSFA / %
600 oC158 ± 8.666 ± 1.5125 ± 36.453 ± 8.769 ± 12.734 ± 3.8
640 oC91 ± 4.442 ± 1.557 ± 2.620 ± 1.545 ± 0.617 ± 2.3
670 oC48 ± 1.516 ± 1.541 ± 1.214 ± 1.234 ± 3.212 ± 2.6
表2  4Mn钢的低温冲击功和剪切断面率
图7  在不同温度回火的4Mn钢在-60 ℃的冲击断口形貌
图8  4Mn钢的示波冲击位移-载荷-吸收能量曲线以及4Mn钢在不同回火温度下的裂纹形成功Wi和裂纹扩展功Wp
图9  在不同温度回火的4Mn钢逆转变奥氏体的STEM图及其EDS谱
图10  用Thermo-Calc软件计算出的钢中Cu的析出量随时效温度的变化[39]
图11  4Mn钢的断后延伸率和n值对应关系以及4Mn钢的加工硬化曲线
[1] Li D C. The present situation and its development trend of hull structural steel [J]. Wuhan Shipbuild., 1995, (3): 28
[1] 李大超. 船体结构钢的现状及其发展趋势 [J]. 武汉造船, 1995, (3): 28
[2] Du L X, Gao X H, Wu H Y, et al. Microstructure Control Theory and Performance of Low Carbon Medium Manganese Steel Plates [M]. Beijing: Metallurgical Industry Press, 2021
[2] 杜林秀, 高秀华, 吴红艳 等. 低碳中锰钢板材组织控制理论及性能 [M]. 北京: 冶金工业出版社, 2021
[3] Wang G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production [J]. Steel Roll., 2019, 36(1): 1
[3] 王国栋. 高质量中厚板生产关键共性技术研发现状和前景 [J]. 轧钢, 2019, 36(1): 1
[4] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59(10): 4002
[5] Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31(7): 843
[6] Liu S L, Hu B, Li W, et al. Refined heterogeneous phase unit enhances ductility in quenched ultra-high strength steels [J]. Scr. Mater., 2021, 194: 113636
[7] Zhang H L, Mi P, Hao L H, et al. Evolution of toughening mechanisms in PH13-8Mo stainless steel during aging treatment [J]. Materials (Basel), 2023, 16(10): 3630
[8] Wang C J, Liang J X, Liu Z B, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering [J]. Acta Metall. Sin., 2016, 52(4): 385
[8] 王长军, 梁剑雄, 刘振宝 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理 [J]. 金属学报, 2016, 52(4): 385
[9] Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (QP)-treated sheet steels [J]. Metall. Mater. Trans., 2014, 45A: 1892
[10] Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering [J]. Mater. Sci. Eng., 2014, 607A: 569
[11] Pan T. Study on microstructures and toughening mechanism of nine percent nickel cryogenic steel for LNG tanks [D]. Beijing: Central Iron Steel Research Institute, 2015
[11] 潘 涛. 液化天然气工程用9%Ni钢低温韧化机理与精细结构研究 [D]. 北京: 钢铁研究总院, 2015
[12] Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing [J]. Mater. Sci. Eng., 2011, 528A(22-23): 6661
[13] Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q P) process: a critical assessment [J]. Acta Mater., 2008, 56(1): 16
[14] Glover A, Speer J G, De moor E. Tempering and austempering of double soaked medium manganese steels [J]. Front. Mater., 2021, 7: 622131
[15] Mueller J J, Glover A G, Matlock D K, et al. Austenite formation and manganese partitioning during double soaking of an ultralow carbon medium-manganese steel [J]. Steel Res. Int., 2023, 94: 2200947
[16] Gibbs P J, De Cooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel [J]. Mater. Sci. Eng., 2014, 609A: 323
[17] Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, 707A: 270
[18] Wang X, Xu Y B, Gao Y J, et al. Enhancing strength-ductility combination in a novel Cu-Ni bearing Q P steel by tailoring the characteristics of fresh martensite [J]. J. Mater. Res. Technol., 2023, 24: 9015
[19] Yang C F, Su H, Li L, et al. High-performance copper-precipitation-hardened ship hull steel [J]. Chin. J. Nonferrous Met., 2004, 14(1): 211
[19] 杨才福, 苏 航, 李 丽 等. 高性能铜沉淀硬化船体钢 [J]. 中国有色金属学报, 2004, 14(1): 211
[20] Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel As-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55(6): 783
[20] 张正延, 柴 锋, 罗小兵 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55(6): 783
[21] Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
[22] Jiao Z B, Luan J H, Guo W, et al. Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel [J]. Mater. Res. Lett., 2017, 5(8): 562
[23] Li Z, Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels [J]. ISIJ Int., 2006, 46(1): 121
[24] Barik R K, Biswal S, Bhandari K K, et al. Micromechanics of cleavage fracture and the associated tongue formation in ferritic steel [J]. Mater. Sci. Eng., 2023, 885A: 145616
[25] Luo Z C, Liu R D, Wang X, et al. The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels [J]. Acta Mater., 2018, 150: 59
[26] Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels [J]. Acta Mater., 2007, 55: 6713
[27] Heo N H, Nam J W, Heo Y U, et al. Grain boundary embrittlement by Mn and eutectoid reaction in binary Fe-12Mn steel [J]. Acta Mater., 2013, 61(11): 4022
[28] Zhang G Y, Li Y, Huang L Y, et al. Process design and microstructure control of medium manganese steel with continuous yield and high strength yield ratio [J]. Acta Metall. Sin., 2024, 60(4): 443
[28] 张光莹, 李 岩, 黄丽颖 等. 连续屈服、高强屈比中锰钢的工艺设计与组织调控 [J]. 金属学报, 2024, 60(4): 443
[29] Yang K, Li Y, Hong Z J, et al. The dominating role of austenite stability and martensite transformation mechanism on the toughness and ductile-to-brittle-transition temperature of a quenched and partitioned steel [J]. Mater. Sci. Eng., 2021, 820A: 141517
[30] Zhan Z D, Shi Z R, Wang Z M, et al. Effect of manganese on the strength-toughness relationship of low-carbon copper and nickel-containing hull steel [J]. Materials (Basel), 2024, 17(5): 1012
[31] Yang Y H, Zhang X J, Yuan S Q. Effect of reversed austenite on low temperature fracture mechanism of 9Ni steel [J]. Trans. Mater. Heat Treat., 2014, 35(9): 101
[31] 杨跃辉, 张晓娟, 苑少强. 回转奥氏体对9Ni钢低温断裂机制的影响 [J]. 材料热处理学报, 2014, 35(9): 101
[32] Liu S, Xiong Z, Guo H, et al. The significance of multi-step partitioning: processing-structure -property relationship in governing high strength-high ductility combination in medium-manganese steels [J]. Acta Mater., 2017, 124: 159
[33] Mohapatra S, Poojari G, Satpathy B, et al. A comprehensive study on the effect of annealing temperature on the tensile and impact behavior of automotive-grade medium manganese steel (Fe-6.22Mn-0.18C) [J]. J. Mater. Eng. Perform, 2024, 33(11): 5348
[34] Wang J, Li W, Zhu X D, et al. Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels [J]. Mater. Sci. Eng., 2022, 832A: 142424
[35] Park M, Kang M S, Park G W, et al. The effects of recrystallization on strength and impact toughness of cold-worked high-Mn austenitic steels [J]. Metals, 2019, 9(9): 948
[36] Tsai Y T, Chang H T, Huang B M, et al. Microstructural characterization of Charpy-impact-tested nanostructured bainite [J]. Mater. Charact., 2015, 107: 63
[37] Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006
[37] 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
[38] Li Z T, Chai F, Luo X B, et al. Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation [J]. Mater. Rep., 2020, 34(3): 06132
[38] 李振团, 柴 锋, 罗小兵 等. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响 [J]. 材料导报, 2020, 34(3): 06132
[39] Zhan Z D, Liu W Y, Yang Y, et al. Effects of temperature on the microstructural evolution and mechanical properties of copper - bearing medium manganese steel during tempering [J]. Mater. Des., 2024, 245: 113273
[40] Wang C Y, Shi J, Cao W Q, et al. Study on uniaxial tension properties of steel treated by Q P process [J]. Trans. Mater. Heat Treat., 2010, 31(6): 77
[40] 王存宇, 时 捷, 曹文全 等. Q P工艺处理钢的单轴拉伸性能研究 [J]. 材料热处理学报, 2010, 31(6): 77
[41] Zhan Z D, Wang Z M, Shi Z R, et al. Effect of chromium and molybdenum addition on the matching mechanism of strength-ductility-toughness of low carbonmedium manganese steel [J]. J. Mater. Res. Technol., 2024, 31: 2103
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.