Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 650-660    DOI: 10.11901/1005.3093.2024.445
  研究论文 本期目录 | 过刊浏览 |
三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究
刘金玲1, 张艳1,2(), 戚栋明1,2, 虞一浩3
1.浙江理工大学纺织科学与工程学院 杭州 310018
2.浙江省现代纺织技术创新中心 绍兴 312000
3.浙江凯瑞博科技股份有限公司 湖州 313109
Preparation and Performance of Flame-retardant Electromagnetic Shielding Composite Films of Sandwich Structure
LIU Jinling1, ZHANG Yan1,2(), QI Dongming1,2, YU Yihao3
1.School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
3.Zhejiang King Label Technology Co., Ltd., Huzhou 313109, China
引用本文:

刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
Jinling LIU, Yan ZHANG, Dongming QI, Yihao YU. Preparation and Performance of Flame-retardant Electromagnetic Shielding Composite Films of Sandwich Structure[J]. Chinese Journal of Materials Research, 2025, 39(9): 650-660.

全文: PDF(11224 KB)   HTML
摘要: 

制备了一种三明治结构、由聚二甲基硅氧烷(PDMS)封装功能可调控的复合薄膜。复合薄膜的柔性阻燃外层是聚乙烯醇-聚磷酸铵(PVA-APP),内层是银纳米线(AgNWs)导电网络结构。这种复合薄膜的电磁屏蔽、阻燃以及疏水性能优异,其三明治结构使内部AgNWs层的屏蔽稳定性显著提高。AgNWs的负载量为0.50 mg/cm2时,这种薄膜的电磁干扰(EMI)屏蔽效能达到53.12 dB。这种复合薄膜还具有自熄性能,阻燃等级达到V-0。PDMS封装层使复合薄膜的疏水性和自清洁性能优异,发生弯折和在潮湿环境中其电磁屏蔽性能保持稳定。

关键词 复合材料三明治结构电磁屏蔽阻燃性疏水性    
Abstract

With the rapid development of communication technologies and portable flexible electronic devices, the problems related with electromagnetic radiation and heat accumulation have been increasingly aggravated, posing significant threats to surrounding electronic equipment and human health. Therefore, the development of flexible multifunctional composite films with high electromagnetic interference (EMI) shielding performance and excellent fire safety has been considered an urgent necessity. In this study, a multifunctional tunable sandwich-structured composite film was successfully prepared, comprising polyvinyl alcohol-ammonium polyphosphate (PVA-APP) as a flexible flame-retardant outer layer, a silver nanowire (AgNWs) conductive network as the inner layer, and polydimethylsiloxane (PDMS) as the encapsulation layer. The composite film exhibits outstanding performance in electromagnetic shielding, flame retardancy, and hydrophobicity. The sandwich structure was designed to significantly enhance the shielding stability of the internal AgNWs layer. When the carrying capacity of the AgNWs is 0.50 mg/cm², the EMI shielding effectiveness of this film reaches 53.12 dB. Furthermore, the vertical burning test results in accordance with UL-94 standard reveal that the composite film also exhibits self-extinguishing property with a V-0 flame-retardant grade. Additionally, the PDMS encapsulation layer endows the composite film excellent hydrophobicity and self-cleaning properties, even when the film was subjected to bending or placed in a humid environment its EMI shielding performance remains stable. In conclusion, the film is characterized by its simple fabrication process and excellent comprehensive performance, making it highly promising in applications for components with curved surfaces and flexible foldable electronic devices.

Key wordscomposite    sandwich structure    electromagnetic shielding    flame retardancy    hydrophobicity
收稿日期: 2024-11-01     
ZTFLH:  TB332  
基金资助:国家自然科学基金(52203105);浙江省自然科学基金(LQ22E030007);浙江理工大学科研启动项目(2020YBZX24);浙江理工大学科研启动项目(20202291-Y)
通讯作者: 张艳,副教授,zy52360@zstu.edu.cn,研究方向为阻燃、电磁屏蔽材料的开发与应用
Corresponding author: ZHANG Yan, Tel: 15209852360, E-mail: zy52360@zstu.edu.cn
作者简介: 刘金玲,女,1999年生,硕士
图1  FPAD/nAgNWs/FPAD三明治结构复合薄膜的制备工艺示意图
Samples10%PVAAPPAgNWs/mg·cm-220%PDMS
PVA100%000
FPA70%30%00
FPAD70%30%020%
FPAD/0.05AgNWs/FPAD70%30%0.0520%
FPAD/0.10AgNWs/FPAD70%30%0.1020%
FPAD/0.20AgNWs/FPAD70%30%0.2020%
FPAD/0.50AgNWs/FPAD70%30%0.5020%
表1  样品的名称和组成
图2  PVA,FPA和FPAD/nAgNWs/FPAD薄膜可承受500.00 g的载荷、FPAD/0.50AgNWs/FPAD薄膜的柔性、可折叠性及其厚度的数码照片
图3  FPAD薄膜、FPA薄膜、FPA/0.50AgNWs薄膜银层的表面以及FPAD/0.50AgNWs/FPAD薄膜截面的SEM照片
图4  PVA、FPA、FPAD及FPAD/0.50AgNWs/FPAD的XRD谱、XPS和FT-IR谱
图5  FPAD/nAgNWs/FPAD薄膜的方阻、在X波段的电磁屏蔽性能、平均SER、SEA和SET值以及平均功率系数
AgNWs contentmg·cm-2SEAdBSERdBSETdBRATtmmSSE / tdB·cm-2
0.0511.0717.4528.520.9220.0770.0010.0649628.66
0.1013.6024.7138.310.9560.0440.0010.0665751.53
0.2016.9625.5942.570.9800.0200.0010.0670753.31
0.5020.6031.9253.120.9840.0160.0010.0685226.54
表2  薄膜样品的SEA、SER、SET、R、T、A、t和SSE/t的数值
图6  FPAD/0.50AgNWs/FPAD薄膜在不同处理条件下的平均SER、SEA和SET值
图7  PVA、FPA和FPAD/0.50AgNWs/FPAD在空气中的TGA和DTG曲线
SamplesT-5% / oCTmax1 / oCTmax2 / oCTmax3 / oCResidue at 800 oC (mass fraction)
PVA113.59368.53501.32-0.38%
FPA110.93262.70451.89718.3722.34%
FPAD/0.50AgNWs/FPAD112.90264.29511.40-44.83%
表3  薄膜样品的TGA和DTG曲线
图8  PVA、FPA和FPAD/0.5AgNWs/FPAD的垂直燃烧图像,以及HRR和THR曲线
SamplesUL-94Melt drippingpHRR / W·g-1THR / kJ·g-1Tempreture / oC
PVANRY/Y175.942.7224.5
FPAV-0N/N151.120.7339.0
FPAD/0.50AgNWs/FPADV-0N/N103.625.8341.5
表4  薄膜样品的UL-94评级和MCC数据
图9  PVA、FPA、FPAD、FPAD/0.05AgNWs/FPAD和FPAD/0.50AgNWs/FPAD薄膜的拉伸应力-应变曲线以及对应的拉伸强度和断裂伸长率
图10  PDMS处理对FPA薄膜接触角的影响和FPAD/0.50AgNWs/FPAD薄膜的自洁性能
[1] Sun C, Zhao K Y, Huang M L, et al. Heterointerface construction for permalloy microparticles through the surface modification of bilayer metallic organic frameworks: Toward microwave absorption enhancement [J]. J. Colloid Interface Sci., 2023, 644: 454
[2] Cheng J Y, Li C B, Xiong Y F, et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials [J]. Nano-Micro Lett., 2022, 14(1): 80
doi: 10.1007/s40820-022-00823-7 pmid: 35333993
[3] Zhang Y L, Ruan K P, Zhou K, et al. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding [J]. Adv. Mater., 2023, 35(16): 2211642
[4] Zhang T R, Zeng S L, Jiang H, et al. Leather solid waste/poly (vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2021, 13(9): 11332
[5] Yu Q L, Han W L, Qiu L J, et al. Exceptionally flame retardant and electromagnetic interference shielding aramid nanofiber-Ti3C2T x MXene twin-layered films with remarkable mechanical strength and flexibility [J]. J. Alloy. Compd., 2024, 1000: 175119
[6] Zhang J Y, Zeng F R, Liu B W, et al. A biomimetic closed-loop recyclable, long-term durable, extreme-condition resistant, flame-retardant nanocoating synthesized by reversible flocculation assembly [J]. Mater. Horizons, 2023, 10(10): 4551
[7] Zhang X M, Zhang J J, Zhang X L, et al. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC [J]. Compos. Sci. Technol., 2017, 150: 217
[8] Jin X X, Wang J F, Dai L Z, et al. Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances [J]. Chem. Eng. J., 2020, 380: 122475
[9] Bao Y, Zhao H H, Gao L, et al. Research progress of electrospinning flame retardant nanofiber [J]. Acta Mater. Compos. Sin., 2024, 41(6): 2801
[9] 鲍 艳, 赵海航, 高 璐 等. 静电纺丝阻燃纳米纤维的研究进展 [J]. 复合材料学报, 2024, 41(6): 2801
[10] Han Y X, Ruan K P, Gu J W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances [J]. Nano Res., 2022, 15(5): 4747
[11] Gong S, Sheng X X, Li X L, et al. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick-Mortar” sandwich structure [J]. Adv. Funct. Mater., 2022, 32(26): 2200570
[12] Lei Z M, Lv F L, Wang X R, et al. Flexible sandwich-structured silver nanowire/exfoliated graphite platelet/aramid nanofiber composite films with excellent EMI shielding, thermal conduction and Joule heating performances [J]. Composites, 2024, 186A: 108433
[13] Hu J N, Liang C Y, Li J D, et al. Ultrastrong and hydrophobic sandwich-structured MXene-based composite films for high-efficiency electromagnetic interference shielding [J]. ACS. Appl. Mater. Interfaces, 2022, 14(29): 33817
[14] Wei C H, Shi L Z, Li M Q, et al. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2024, 175: 194
[15] Xu D L, Qiao Q D, Li Q, et al. Preparation and performance of PVA/APP modified lithium battery separators [J]. Fine Chem., 2024, 41(1): 159
[15] 许德涟, 乔庆东, 李 琪 等. 聚乙烯醇/聚磷酸铵改性锂电隔膜的制备与性能 [J]. 精细化工, 2024, 41(1): 159
[16] He L, Yao Q Y, Xu Y N, et al. Flexible, hydrophobic, and robust composite films with sandwich structure for electromagnetic interference shielding and Joule heating [J]. Polymer, 2024, 298: 126890
[17] Yang M. Preparation and performance of multifunctional thermoplastic polyurethane composite fiber membrane [D]. Tianjin: Tianjin University of Technology, 2023
[17] 杨 敏. 多功能热塑性聚氨酯复合纤维膜的制备及性能研究 [D]. 天津: 天津理工大学, 2023
[18] Bai X Y. Preparation and performance study of leakage-proof polyurethane prosthetic shell material [D]. Beijing: Beijing University of Chemical Technology, 2024
[18] 白雪杨. 防渗型聚氨酯假体外壳材料的制备及性能研究 [D]. 北京: 北京化工大学, 2024
[19] Luo Y D. Preparation of superhydrophobic/superoleophilic functional paper and its application in oil-water separation [D]. Kunming: Kunming University of Science and Technology, 2022
[19] 罗一丁. 超疏水/超亲油功能纸的制备及在油水分离中的应用 [D]. 昆明: 昆明理工大学, 2022
[20] Liu P, Lai X J, Wang L, et al. Synthesis and application of a pH-responsive amino acid acidizing foaming agent [J]. Fine Chem., 2019, 36(3): 442
[20] 刘 佩, 赖小娟, 王 磊 等. 一种pH响应性氨基酸酸液起泡剂的合成与应用 [J]. 精细化工, 2019, 36(3): 442
[21] Mei X K, Lu L S, Xie Y X, et al. Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding [J]. ACS. Appl. Mater. Interfaces, 2020, 12(43): 49030
[22] Li M, Huan K, Deng D, et al. Coaxial electrospinning synthesis of size-tunable CuO/NiO hollow heterostructured nanofibers: Towards detection of glucose level in human serum [J]. Colloids Surf., 2023, 222B: 113047
[23] Zhang W B, Wei L F, Ma Z L, et al. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding [J]. Carbon, 2021, 177: 412
[24] Mu X W, Jin Z Y, Chu F K, et al. High-performance flame-retardant polycarbonate composites: Mechanisms investigation and fire-safety evaluation systems establishment [J]. Composites, 2022, 238B: 109873
[25] Peng X. Preparation and study for flame retardant PVA packaging film [D]. Zhuzhou: Hunan University of Technology, 2017
[25] 彭 笑. 阻燃型聚乙烯醇(PVA)包装薄膜的制备与研究 [D]. 株洲: 湖南工业大学, 2017
[26] Shen B, Zhai W T, Zheng W G. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding [J]. Adv. Funct. Mater., 2014, 24(28): 4542
[27] Liao J H. Research on flame retardant and smoke suppression properties and mechanism of modified ammonium polyphosphate in epoxy resin [D]. Changsha: Central South University, 2024
[27] 廖家浩. 改性聚磷酸铵在环氧树脂中的阻燃抑烟性能及机理研究 [D]. 长沙: 中南大学, 2024
[28] Zhang Y, Cheng W H, Tian W X, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance [J]. ACS Appl. Mater. Interfaces, 2020, 12(5): 6371
[1] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[2] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[3] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[4] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[5] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[6] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[7] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[8] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[9] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[10] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[11] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[12] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[13] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[14] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[15] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.