Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (3): 233-240    DOI: 10.11901/1005.3093.2024.219
  研究论文 本期目录 | 过刊浏览 |
α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能
唐晨, 张耀宗(), 王一凡, 刘超, 赵德润, 董鹏昊
华北理工大学建筑工程学院 唐山 063000
Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation
TANG Chen, ZHANG Yaozong(), WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao
College of Architectural Engineering, North China University of Science and Technology, Tangshan 063000, China
引用本文:

唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
Chen TANG, Yaozong ZHANG, Yifan WANG, Chao LIU, Derun ZHAO, Penghao DONG. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. Chinese Journal of Materials Research, 2025, 39(3): 233-240.

全文: PDF(1996 KB)   HTML
摘要: 

用高温煅烧法制备α-Fe2O3/TiO2新型复合材料并使用X射线衍射仪等手段对其表征,研究了在高压汞灯照射下其对苯酚的光催化降解性能。结果表明:这种复合材料中的纳米α-Fe2O3/TiO2附着在纳米TiO2上形成异质结构,使其可见光吸收区间明显变宽,带隙变窄(2.02~1.81 eV)。这种复合材料的比表面积和孔径体积(为66.4725 m2/g和0.3213 m3/g),远高于单一催化剂,光催化性能优于α-Fe2O3。在α-Fe2O3和TiO2复合质量比例为1∶10、复合材料投加量为0.6 g/L、苯酚浓度为20 mg/L、pH = 8、光照时间为120 min的条件下,苯酚的降解效率可达94.79%,远高于单一材料的性能。

关键词 复合材料α-Fe2O3/TiO2光催化苯酚    
Abstract

In order to solve the problems of low efficiency and high cost of catalyst in the treatment of phenol-containing wastewater by traditional photocatalytic technology, a new composite material of α-Fe2O3/TiO2 was prepared by high temperature calcination. The prepared materials were characterized by X-ray diffractometer and other instruments, and their photocatalytic degradation of phenol was studied under the irradiation of 500W high voltage mercury lamp. The results of XRD and SEM showed that the composite material was successfully prepared, and the nano-α-Fe2O3 was attached to the nano-TiO2 to form a heterostructure. FT-IR and UV-Vis detection showed that the composite material had good photocatalytic performance, its visible light absorption range was obviously widened, and the band gap was narrowed (2.02 eV to 1.81 eV). The specific surface area and pore volume were calculated to be 66.4725 m2/g and 0.3213 m3/g by BET test, which were much higher than that of single catalyst, further indicating that the photocatalytic performance of the composite was better than that of α-Fe2O3. In addition, the factors such as the composite ratio of α-Fe2O3 to TiO2, the dosage of composite material, the concentration of phenol, pH and illumination time were optimized. The results show that the degradation efficiency of phenol can reach 94.79% in case that the test solution with phenol concentration of 20 mg/L and pH = 8, a dosage 0.6 g/L of the composite material with a mass ratio 1∶10 for α-Fe2O3 to TiO2 is adopted under the illumination of high voltage mercury lamp for 120 min. Which is much higher than that of single material.

Key wordscomposite    α-Fe2O3/TiO2    photochemical catalysis    phenol
收稿日期: 2024-05-21     
ZTFLH:  TB331  
基金资助:河北省自然科学基金(E2022209044)
通讯作者: 张耀宗,副教授,zyaozong@163.com,研究方向为水污染控制及资源化
Corresponding author: ZHANG Yaozong, Tel: 13832512531, E-mail: zyaozong@163.com
作者简介: 唐 晨,男,1998年生,硕士生
图1  复合材料FT(5/10/20/30)的XRD谱
图2  α-Fe2O3、TiO2和FT10的SEM照片
图3  α-Fe2O3、TiO2和复合材料FT(5/10/20/30)的FT-IR谱
图4  FT10和α-Fe2O3的可见光吸收曲线
图5  FT10的氮气吸附-脱附等温曲线和孔径分布曲线
图6  不同复合比例复合材料的苯酚降解曲线
图7  苯酚的pH值对降解效果的影响
图8  催化剂投加量对苯酚降解的影响
图9  苯酚浓度对降解效果的影响
图10  α-Fe2O3/TiO2复合材料对苯酚的降解效果和一级动力学拟合曲线
图11  FT10对苯酚的光催化降解的机理
图12  FT10的重复使用性能
1 Liu D B. Synthesis and photocatalytic properties of α-Fe2O3 and its composites [D]. Guiyang: Guizhou university, 2020
1 刘大波. α-Fe2O3及其复合物的合成与光催化性能研究 [D]. 贵阳: 贵州大学, 2020
2 Li J J, You J H, Wang Z W, et al. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: a review of recent advances [J]. J. Environ. Chem. Eng., 2022, 10: 108329
3 Khan J, Lin S S, Nizeyimana J C, et al. Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand [J]. J. Cleaner Prod., 2021, 319: 128687
4 Ahmed A, Usman M, Yu B, et al. Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes [J]. J. Mol. Liq., 2021, 339: 116729
5 Lin Q, Xia S Y, Li S P, et al. Fabrication of Au@α-Fe2O3 particles with an enhanced visible-light photocatalysis activity [J]. Mater. Chem. Phys., 2023, 307: 128173
6 Huang W, Lu X Y, Jia D S, et al. Characterization of structural, optical and photocatalytic properties of yttrium modified hematite (α-Fe2O3) nanocatalyst [J]. Ceram. Int., 2023, 49(15): 25602
7 Tahir M, Fakhar-e-Alam M, Atif M, et al. Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method [J]. J. King Saud Univ. Sci., 2023, 35(5): 102695
8 Badawi A, Alharthi S S, Alotaibi A A, et al. Tailoring the structural and optical characteristics of hematite (α-Fe2O3) nanostructures by barium/aluminum dual doping for eco-friendly applications [J]. Appl. Phys., 2023, 129A(5) : 339
9 Sridevi H, Bhat M R, Kumar P S, et al. Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach [J]. Appl. Nanosci., 2023, 13: 5605
10 Xiang H L, Ren G K, Yang X S, et al. A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system [J]. Ecotoxicol. Environ. Saf., 2020, 200: 110744
11 Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(17): 2421
12 Aquino C L E, Balela M D L. Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange [J]. SN Appl. Sci., 2020, 2: 2099
13 Lei R, Ni H W, Chen R S, et al. Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue [J]. J. Nanopart. Res., 2017, 19: 378
14 Zhang P, Wang T, Gong J L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts [J]. Chem, 2018, 4(2): 223
15 Yang G L, Jiang Y, Yin B J, et al. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C3N4/α-Fe2O3 photocatalyst under simulated sunlight [J]. Environ. Sci. Pollut. Res., 2023, 30: 70260
16 Zhang T, Guo X J, Pei H B, et al. Design and synthesis of α-Fe2O3/MIL-53(Fe) composite as a photo-Fenton catalyst for efficient degradation of tetracycline hydrochloride [J]. Colloids Surf., 2023, 659A: 130822
17 Habibi-Yangjeh A, Feizpoor S, Seifzadeh D, et al. Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles [J]. Sep. Purif. Technol., 2020, 238: 116404
18 Spigariol N, Liccardo L, Lushaj E, et al. Titania nanorods array homojunction with sub-stoichiometric TiO2 for enhanced methylene blue photodegradation [J]. Catal. Today, 2023, 419: 114134
19 Qu K J, Huang L, Hu S Y, et al. TiO2 supported on rice straw biochar as an adsorptive and photocatalytic composite for the efficient removal of ciprofloxacin in aqueous matrices [J]. J. Environ. Chem. Eng., 2023, 11(2): 109430
20 Robertson J, Xiong K, Clark S J. Band structure of functional oxides by screened exchange and the weighted density approximation [J]. Phys. Status Solidi (b), 2006, 243(9): 2054
21 Wang Q, Yang G. Unraveling the photocatalytic mechanisms for U(VI) reduction by TiO2 [J]. Mol. Catal., 2022, 533: 112770
22 Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Z. für Kristallogr.-Cryst. Mater., 2005, 220(5-6): 567
23 Mammar R B, Hamadou L. Highly broadband plasmonic Pt nanoparticles modified α-Fe2O3/TiO2 nanotubes for efficient photoelectrochemical water splitting [J]. Opt. Mater., 2023, 143: 114191
24 Kavitha S, Ranjith R, Jayamani N, et al. Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 8906
25 Rasouli K, Alamdari A, Sabbaghi S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design [J]. Sep. Purif. Technol., 2023, 307: 122799
26 Wang Y, Du M H, Zhang N, et al. Degradation effect and mechanism of phenol wastewater by α-Fe2O3 catalytic ozone oxidation [J]. Res. Environ. Sci., 2022, 35(8): 1818
26 王 勇, 杜明辉, 张 宁 等. α-Fe2O3催化臭氧氧化处理苯酚废水的效果及机理 [J]. 环境科学研究, 2022, 35(8): 1818
27 Zhang J L, Wei J, Ren Y Z, et al. Degradation characteristics and kinetics of penicillin G in water by ozone oxidation [J]. Res. Environ. Sci., 2019, 32(7): 1231
27 张佳丽, 魏 健, 任越中 等. 臭氧氧化降解水中青霉素G特性和动力学特征 [J]. 环境科学研究, 2019, 32(7): 1231
28 Al Ghafry S S A, Al Shidhani H, Al Farsi B, et al. The photocatalytic degradation of phenol under solar irradiation using microwave-assisted Ag-doped ZnO nanostructures [J]. Opt. Mater., 2023, 135: 113272
29 Zenou V Y, Bakardjieva S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis [J]. Mater. Charact., 2018, 144: 287
30 Apte S K, Naik S D, Sonawane R S, et al. Synthesis of nanosize‐necked structure α‐and γ‐Fe2O3 and its photocatalytic activity [J]. J. Am. Ceram. Soc., 2007, 90(2): 412
31 De La Osa R A, Iparragirre I, Ortiz D, et al. The extended Kubelka-Munk theory and its application to spectroscopy [J]. ChemTexts, 2020, 6: 2
32 Han S C, Hu L F, Liang Z Q, et al. One‐step hydrothermal synthesis of 2D hexagonal nanoplates of α‐Fe2O3/graphene composites with enhanced photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(36): 5719
33 Zhang S W, Li J X, Niu H H, et al. Visible‐light photocatalytic degradation of methylene blue using SnO2/α‐Fe2O3 hierarchical nanoheterostructures [J]. ChemPlusChem, 2013, 78(2): 192
34 Liu X N, Lu Q F, Zhu C F, et al. Enhanced photocatalytic activity of α-Fe2O3/Bi2WO6 heterostructured nanofibers prepared by electrospinning technique [J]. RSC Adv., 2015, 5(6): 4077
35 Merkulov D Š, Lazarevic M, Djordjevic A, et al. Potential of TiO2 with various Au nanoparticles for catalyzing mesotrione removal from wastewaters under sunlight [J]. Nanomaterials, 2020, 10(8): 1591
36 Duan A P, Hou X S, Yang M, et al. EDTA-2Na assisted facile synthesis of monoclinic bismuth vanadate (m-BiVO4) and m-BiVO4/rGO as a highly efficient visible-light-driven photocatalyst [J]. Mater. Lett., 2022, 311: 131498
37 Liang Q W, Chen X, Liu R N, et al. Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-Zn x Cd1 - x S graphene aerogel via synergy of adsorption and photocatalysis under visible light [J]. J. Environ. Sci., 2023, 124: 360
[1] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[2] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[3] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[4] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[5] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[6] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[7] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[8] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[9] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[10] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[11] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[12] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[13] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[14] 庄超君, 胡俊辉, 鄢瑛. 微纤复合硼掺杂碳纳米管膜催化剂的制备及其对苯酚的降解性能[J]. 材料研究学报, 2024, 38(12): 893-901.
[15] 霍朝晖, 吴豪杰, 何泳淇, 郑明秀, 詹曼姿, 张绮彤, 廖晓琳. 聚卟啉/MXene基自支撑复合薄膜的光催化降解性能[J]. 材料研究学报, 2024, 38(12): 950-960.