|
|
α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能 |
唐晨, 张耀宗( ), 王一凡, 刘超, 赵德润, 董鹏昊 |
华北理工大学建筑工程学院 唐山 063000 |
|
Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation |
TANG Chen, ZHANG Yaozong( ), WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao |
College of Architectural Engineering, North China University of Science and Technology, Tangshan 063000, China |
引用本文:
唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
Chen TANG,
Yaozong ZHANG,
Yifan WANG,
Chao LIU,
Derun ZHAO,
Penghao DONG.
Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. Chinese Journal of Materials Research, 2025, 39(3): 233-240.
1 |
Liu D B. Synthesis and photocatalytic properties of α-Fe2O3 and its composites [D]. Guiyang: Guizhou university, 2020
|
1 |
刘大波. α-Fe2O3及其复合物的合成与光催化性能研究 [D]. 贵阳: 贵州大学, 2020
|
2 |
Li J J, You J H, Wang Z W, et al. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: a review of recent advances [J]. J. Environ. Chem. Eng., 2022, 10: 108329
|
3 |
Khan J, Lin S S, Nizeyimana J C, et al. Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand [J]. J. Cleaner Prod., 2021, 319: 128687
|
4 |
Ahmed A, Usman M, Yu B, et al. Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes [J]. J. Mol. Liq., 2021, 339: 116729
|
5 |
Lin Q, Xia S Y, Li S P, et al. Fabrication of Au@α-Fe2O3 particles with an enhanced visible-light photocatalysis activity [J]. Mater. Chem. Phys., 2023, 307: 128173
|
6 |
Huang W, Lu X Y, Jia D S, et al. Characterization of structural, optical and photocatalytic properties of yttrium modified hematite (α-Fe2O3) nanocatalyst [J]. Ceram. Int., 2023, 49(15): 25602
|
7 |
Tahir M, Fakhar-e-Alam M, Atif M, et al. Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method [J]. J. King Saud Univ. Sci., 2023, 35(5): 102695
|
8 |
Badawi A, Alharthi S S, Alotaibi A A, et al. Tailoring the structural and optical characteristics of hematite (α-Fe2O3) nanostructures by barium/aluminum dual doping for eco-friendly applications [J]. Appl. Phys., 2023, 129A(5) : 339
|
9 |
Sridevi H, Bhat M R, Kumar P S, et al. Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach [J]. Appl. Nanosci., 2023, 13: 5605
|
10 |
Xiang H L, Ren G K, Yang X S, et al. A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system [J]. Ecotoxicol. Environ. Saf., 2020, 200: 110744
|
11 |
Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(17): 2421
|
12 |
Aquino C L E, Balela M D L. Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange [J]. SN Appl. Sci., 2020, 2: 2099
|
13 |
Lei R, Ni H W, Chen R S, et al. Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue [J]. J. Nanopart. Res., 2017, 19: 378
|
14 |
Zhang P, Wang T, Gong J L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts [J]. Chem, 2018, 4(2): 223
|
15 |
Yang G L, Jiang Y, Yin B J, et al. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C3N4/α-Fe2O3 photocatalyst under simulated sunlight [J]. Environ. Sci. Pollut. Res., 2023, 30: 70260
|
16 |
Zhang T, Guo X J, Pei H B, et al. Design and synthesis of α-Fe2O3/MIL-53(Fe) composite as a photo-Fenton catalyst for efficient degradation of tetracycline hydrochloride [J]. Colloids Surf., 2023, 659A: 130822
|
17 |
Habibi-Yangjeh A, Feizpoor S, Seifzadeh D, et al. Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles [J]. Sep. Purif. Technol., 2020, 238: 116404
|
18 |
Spigariol N, Liccardo L, Lushaj E, et al. Titania nanorods array homojunction with sub-stoichiometric TiO2 for enhanced methylene blue photodegradation [J]. Catal. Today, 2023, 419: 114134
|
19 |
Qu K J, Huang L, Hu S Y, et al. TiO2 supported on rice straw biochar as an adsorptive and photocatalytic composite for the efficient removal of ciprofloxacin in aqueous matrices [J]. J. Environ. Chem. Eng., 2023, 11(2): 109430
|
20 |
Robertson J, Xiong K, Clark S J. Band structure of functional oxides by screened exchange and the weighted density approximation [J]. Phys. Status Solidi (b), 2006, 243(9): 2054
|
21 |
Wang Q, Yang G. Unraveling the photocatalytic mechanisms for U(VI) reduction by TiO2 [J]. Mol. Catal., 2022, 533: 112770
|
22 |
Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Z. für Kristallogr.-Cryst. Mater., 2005, 220(5-6): 567
|
23 |
Mammar R B, Hamadou L. Highly broadband plasmonic Pt nanoparticles modified α-Fe2O3/TiO2 nanotubes for efficient photoelectrochemical water splitting [J]. Opt. Mater., 2023, 143: 114191
|
24 |
Kavitha S, Ranjith R, Jayamani N, et al. Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 8906
|
25 |
Rasouli K, Alamdari A, Sabbaghi S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design [J]. Sep. Purif. Technol., 2023, 307: 122799
|
26 |
Wang Y, Du M H, Zhang N, et al. Degradation effect and mechanism of phenol wastewater by α-Fe2O3 catalytic ozone oxidation [J]. Res. Environ. Sci., 2022, 35(8): 1818
|
26 |
王 勇, 杜明辉, 张 宁 等. α-Fe2O3催化臭氧氧化处理苯酚废水的效果及机理 [J]. 环境科学研究, 2022, 35(8): 1818
|
27 |
Zhang J L, Wei J, Ren Y Z, et al. Degradation characteristics and kinetics of penicillin G in water by ozone oxidation [J]. Res. Environ. Sci., 2019, 32(7): 1231
|
27 |
张佳丽, 魏 健, 任越中 等. 臭氧氧化降解水中青霉素G特性和动力学特征 [J]. 环境科学研究, 2019, 32(7): 1231
|
28 |
Al Ghafry S S A, Al Shidhani H, Al Farsi B, et al. The photocatalytic degradation of phenol under solar irradiation using microwave-assisted Ag-doped ZnO nanostructures [J]. Opt. Mater., 2023, 135: 113272
|
29 |
Zenou V Y, Bakardjieva S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis [J]. Mater. Charact., 2018, 144: 287
|
30 |
Apte S K, Naik S D, Sonawane R S, et al. Synthesis of nanosize‐necked structure α‐and γ‐Fe2O3 and its photocatalytic activity [J]. J. Am. Ceram. Soc., 2007, 90(2): 412
|
31 |
De La Osa R A, Iparragirre I, Ortiz D, et al. The extended Kubelka-Munk theory and its application to spectroscopy [J]. ChemTexts, 2020, 6: 2
|
32 |
Han S C, Hu L F, Liang Z Q, et al. One‐step hydrothermal synthesis of 2D hexagonal nanoplates of α‐Fe2O3/graphene composites with enhanced photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(36): 5719
|
33 |
Zhang S W, Li J X, Niu H H, et al. Visible‐light photocatalytic degradation of methylene blue using SnO2/α‐Fe2O3 hierarchical nanoheterostructures [J]. ChemPlusChem, 2013, 78(2): 192
|
34 |
Liu X N, Lu Q F, Zhu C F, et al. Enhanced photocatalytic activity of α-Fe2O3/Bi2WO6 heterostructured nanofibers prepared by electrospinning technique [J]. RSC Adv., 2015, 5(6): 4077
|
35 |
Merkulov D Š, Lazarevic M, Djordjevic A, et al. Potential of TiO2 with various Au nanoparticles for catalyzing mesotrione removal from wastewaters under sunlight [J]. Nanomaterials, 2020, 10(8): 1591
|
36 |
Duan A P, Hou X S, Yang M, et al. EDTA-2Na assisted facile synthesis of monoclinic bismuth vanadate (m-BiVO4) and m-BiVO4/rGO as a highly efficient visible-light-driven photocatalyst [J]. Mater. Lett., 2022, 311: 131498
|
37 |
Liang Q W, Chen X, Liu R N, et al. Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-Zn x Cd1 - x S graphene aerogel via synergy of adsorption and photocatalysis under visible light [J]. J. Environ. Sci., 2023, 124: 360
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|