Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 683-693    DOI: 10.11901/1005.3093.2024.444
  研究论文 本期目录 | 过刊浏览 |
7075-TiB2 复合材料的制备和性能
颉芳霞1,2(), 吴光庆1, 张世文3, 卢泽异1, 牟彦铭1,2, 何雪明1,2
1.江南大学机械工程学院 无锡 214122
2.江苏省食品先进制造装备技术重点实验室 无锡 214122
3.无锡锡钻地质装备有限公司 无锡 214413
Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2
XIE Fangxia1,2(), WU Guangqing1, ZHANG Shiwen3, LU Zeyi1, MU Yanming1,2, HE Xueming1,2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China
3.Wuxi Xizuan Geological Drilling Equipment Co., Ltd., Wuxi 214413, China
引用本文:

颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
Fangxia XIE, Guangqing WU, Shiwen ZHANG, Zeyi LU, Yanming MU, Xueming HE. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2[J]. Chinese Journal of Materials Research, 2025, 39(9): 683-693.

全文: PDF(18471 KB)   HTML
摘要: 

用热压烧结制备7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%,质量分数)复合材料,研究了TiB2颗粒含量和固溶温度对其微观组织和力学性能的影响。结果表明:在600 ℃热压烧结的7075-6%TiB2复合材料其致密度可达98.17%。TiB2颗粒阻碍了α-Al的生长,热压态7075-6%TiB2复合材料的晶粒显著细化,平均晶粒尺寸由57.53 μm减小到38.12 μm。7075-6%TiB2复合材料中主要分布在晶界的TiB2颗粒,阻碍溶质扩散和降低扩散速度抑制了晶界处η(MgZn2)相、S(Al2CuMg)相的生长。细晶强化和弥散强化的共同作用使热压态7075-6%TiB2复合材料的屈服强度和抗拉强度分别达到(205 ± 5) MPa和(338 ± 6) MPa;随着固溶温度(460~520 ℃)的提高,热压态7075-6%TiB2复合材料的屈服强度和抗拉强度先提高后降低。在500 ℃固溶的复合材料内析出较多细小的强化相(η、S),显著的弥散强化使屈服强度、抗拉强度分别比固溶处理前提高了39.5%和25.4%。在500 ℃固溶的7075-6%TiB2复合材料,其力学性能比铝合金更好。

关键词 复合材料7075-6%TiB2热压烧结力学性能固溶温度    
Abstract

Al-alloy 7075 based composites 7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%, mass fraction) were prepared by hot pressing sintering. The effect of TiB2 particle content and the post solution treatment temperatures on the microstructure and mechanical properties of the composites were studied. The results show that by hot press sintering at 600 oC, the density of 7075-6%TiB2 composites can reach 98.17%; TiB2 particles could effectively inhibit the growth of α-Al, and the average grain size of 7075-6%TiB2 composite was significantly refined, decreasing from 57.53 μm to 38.12 μm; TiB2 particles are mainly located at the grain boundaries, which hinder the diffusion of solute atoms, slow down their diffusion rate, and inhibit the growth of η(MgZn2) and S(Al2CuMg) phases at the grain boundaries; Correspondingly, the mechanical properties of the hot-press sintered 7075-6%TiB2 composite reached the peak, and the yield strength and tensile strength were (205 ± 5) MPa and (338 ± 6) MPa, respectively, due to the joint action of fine crystal strengthening and dispersion strengthening. With the increase of solution temperature within the range 460-520 oC, the yield strength and tensile strength of hot-pressed 7075-6%TiB2 composites first increase and then decrease. When the solution temperature is 500 oC, more small strengthening phases (η, S) are precipitated inside the composite matrix, and the dispersion strengthening effect is significant. Compared with the as hot-pressed 7075-6%TiB2 composite, the yield strength and tensile strength are increased by 39.5% and 25.4%. It should be also mentioned that the composite 7075-6%TiB2 being subjected to solution treated at 500 oC showed better mechanical properties than those of 7075 Al-alloy.

Key wordscomposite    7075-6%TiB2    hot pressing sintering    mechanical properties    solution temperature
收稿日期: 2024-11-01     
ZTFLH:  TB333  
基金资助:国家自然科学基金(51501073);国家自然科学基金(51975251);国家自然科学基金(52205056);中国博士后科学基金(2023M731424)
通讯作者: 颉芳霞,副教授,xiefangxia@jiangnan.edu.cn,研究方向为高性能轻金属材料近净成形
Corresponding author: XIE Fangxia, Tel: (0510)85910562, E-mail: xiefangxia@jiangnan.edu.cn
作者简介: 颉芳霞,女,1985年生,博士
图1  7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%)复合材料的致密度与热压烧结温度的关系
图2  热压态7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%)复合材料的XRD谱和框选区1、2的局部放大
图3  热压态7075-xTiB2复合材料的SEM照片
图4  热压态7075-xTiB2复合材料的晶粒尺寸分布直方图
图5  热压态7075-6%TiB2复合材料的SEM照片、元素分布以及A点的EDS分析
图6  热压态7075-xTiB2 (x = 0%, 3%, 6%, 9%, 12%, 15%)复合材料的拉伸应力-应变曲线和力学性能
图7  热压态7075-xTiB2复合材料的断口形貌
图8  在不同温度固溶的7075-6%TiB2复合材料的XRD谱和框选区1、2的局部放大
图9  在不同温度固溶的7075-6%TiB2复合材料的SEM照片和B, C, D, E点的EDS分析
图10  在不同温度固溶的7075-6%TiB2复合材料的拉伸应力-应变曲线和力学性能
图11  在不同温度固溶的7075-6%TiB2复合材料的断口形貌
[1] Liang J, Sun J H, Li X M, et al. Development and application of aluminum alloy drill rod in geologic drilling [J]. Procedia Eng., 2014, 73: 84
[2] Wen K, Liu H W. Fatigue crack growth and precipitation characteristics of a high Zn-containing Al-Zn-Mg-Cu alloy with various typical aging states [J]. Mater. Sci. Forum, 2021, 1026: 19
[3] Bishop D P, Caley W F, Kipouros G J, et al. Powder metallurgy processing of 2xxx and 7xxx series aluminium alloys [J]. Can. Metall. Quart., 2011, 50(3): 246
[4] Gupta M K. Mechanical behaviors of Al 6063/TiB2 composites fabricated by stir casting process [J]. Mater. Today: Proc., 2023, 82: 222
[5] Chen F, Wang T M, Chen Z N, et al. Microstructure, mechanical properties and wear behaviour of Zn-Al-Cu-TiB2 in situ composites [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(1): 103
[6] Dikici B, Gavgali M, Bedir F. Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature [J]. J. Compos. Mater., 2011, 45(8): 895
[7] Chen J, Yu W W, Zuo Z Y, et al. Effects of in-situ TiB2 particles on machinability and surface integrity in milling of TiB2/2024 and TiB2/7075 Al composites [J]. Chin. J. Aeronaut., 2021, 34(6): 110
[8] Zhao S L, Zhang H M, Cui Z S, et al. Strength and ductility improvement of an in-situ TiB2/Al-Zn-Mg-Cu composite by elliptical cross-section torsion extrusion [J]. Composites, 2021, 216B: 108843
[9] Mohapatra S, Chaubey K A, Mishra K D, et al. Fabrication of Al-TiC composites by hot consolidation technique: its microstructure and mechanical properties [J]. J. Mater. Res. Technol., 2016, 5(2): 117
[10] Liu Z S, Luo Z A, Zhang X, et al. Study on microstructure and mechanical properties of (TiC+B4C)/6061Al composites prepared by vacuum hot-press sintering method [J]. J. Manuf. Process., 2024, 131: 670
[11] Chen L, Zhang X L, Zheng W, et al. Investigation on corrosion behaviors and mechanical properties of TiB2/7075Al composites with various particle contents [J]. J. Mater. Res. Technol., 2023, 23: 2911
[12] Lu C, Zhang A, Yang Z, et al. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites [J]. Iron Steel Vanadium Tiianium, 2022, 43(3): 47
[12] 卢 超, 张 傲, 杨 智 等. 放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响 [J]. 钢铁钒钛, 2022, 43(3): 47
[13] Liu W C, Deng C, Hu L X, et al. Preparation of Al-Si alloy semi-solid billets by liquid phase reaction sintering [J]. Powder Metall. Technol., 2022, 40(5): 465
[13] 刘文超, 邓 澄, 胡连喜 等. 液相反应烧结制备Al-Si合金半固态坯料 [J]. 粉末冶金技术, 2022, 40(5): 465
doi: 10.19591/j.cnki.cn11-1974/tf.2022040011
[14] Yuan X J, Qu X H, Yin H Q, et al. Effects of sintering temperature on densification, microstructure and mechanical properties of Al-based alloy by high-velocity compaction [J]. Metals, 2021, 11(2): 218
[15] Latief F H, Sherif E S M. Effects of sintering temperature and graphite addition on the mechanical properties of aluminum [J]. J. Ind. Eng. Chem., 2012, 18(6): 2129
[16] Sweet G A, Hexemer R L, Donaldson I W, et al. Powder metallurgical processing of a 2xxx series aluminum powder metallurgy metal alloy reinforced with AlN particulate additions [J]. Mater. Sci. Eng., 2019, 755A: 10
[17] Chen Y, Jian Z Y, Ren Y M, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties [J]. J. Mater. Res. Technol., 2023, 23: 3697
[18] Geng J W, Hong T R, Ma Y, et al. The solution treatment of in-situ sub-micron TiB2/2024 Al composite [J]. Mater. Des., 2016, 98: 186
[19] Ren H S, Liu Y B, Sun Q, et al. Promoting strengthening and grain refinement of aluminum alloy during wire and arc additive manufacturing by adding TiB2 particles [J]. Mater. Sci. Eng., 2023, 888A: 145805
[20] Li N, Wang T, Zhang L, et al. Microstructure evolution and mechanical properties strengthening in laser powder bed fusion of high-strength SiC and TiB2 co-reinforced Al-Zn-Mg-Cu composites [J]. J. Alloy. Compd., 2023, 965: 171463
[21] Que B H, Chen L, Chen Y J, et al. Fabrication of Al/Al-TiB2 laminate composites via hot press sintering process: An insight into the mechanical properties and fracture behavior[J]. J. Manuf. Process., 2024, 109: 53
[22] Xie D H, Pan R, Zhu S Z, et al. Effect of reinforced particle size on the microstructure and tensile properties of B4C/Al-Zn-Mg-Cu composites [J]. Chin. J. Mater. Res., 2023, 37(10): 731
[22] 谢东航, 潘 冉, 朱士泽 等. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731
doi: 10.11901/1005.3093.2022.574
[23] Sahoo B P, Das D, Chaubey A K. Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites [J]. Mater. Sci. Eng., 2021, 825A: 141873
[24] Bian P B, Han X Z, Zhang J F, et al. Effect of aluminum powder size and temperature on mechanical properties of hot pressed 15%SiC/2009Al composite [J]. Chin. J. Mater. Res., 2024, 38(6): 401
doi: 10.11901/1005.3093.2023.125
[24] 边鹏博, 韩修柱, 张峻凡 等. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响 [J]. 材料研究学报, 2024, 38(6): 401
doi: 10.11901/1005.3093.2023.125
[25] Wu Y H, Li L W, Kang H J, et al. Agglomerating behavior of in-situ TiB2 particles and strength-ductility synergetic improvement of in-situ TiB2p/7075Al composites through ultrasound vibration [J]. Mater. Charact., 2024, 208: 113652
[26] Agrawal A P, Srivastava S K. Investigations of fatigue crack growth rate behaviour and life prediction of Si3N4/TiB2 reinforced hybrid metal matrix composites [J]. Int. J. Fatigue, 2024, 186: 108373
[27] Yan J X, Xie Y X, Ou B X, et al. Process optimization and tribological behavior of Ti-48Al-2Cr-2Nb prepared by selective electron beam melting [J]. Eng. Fail. Anal., 2024, 165: 108837
[28] Li H, Zhu C, Gu X T, et al. Understanding the strength increment of Al-Zn-Mg-Cu aluminum alloys by enhanced solution-treatment (EST) [J]. Mater. Sci. Eng., 2024, 903A: 146677
[29] Zhao Z Y, Xu H C, Liu H L, et al. Grain size control method for enhancing high-temperature durability of Al-Cu-Mg-Ag alloy [J]. J. Mater. Res. Technol., 2024, 30: 9425
[30] Hao S, Guo X P, Cui J Y, et al. Study on the solid solution temperature of achieving ultra-high strength in wire-arc additive manufactured Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Charact., 2023, 201: 112975
[31] Li N, Wang T, Zhang L, et al. Effects of solution treatment on microstructure and mechanical properties of (SiC+TiB2)/Al-Zn-Mg-Cu composite fabricated by laser powder bed fusion [J]. J. Ind. Eng. Chem., 2023, 26: 3466
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[3] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[4] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[5] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[6] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[7] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[8] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[9] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[10] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[11] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[13] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[14] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[15] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.