Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 694-700    DOI: 10.11901/1005.3093.2024.345
  研究论文 本期目录 | 过刊浏览 |
原子转移自由基聚合(ATRP)再生纤维素膜的表面PGMA接枝改性
高英1, 王军波1, 米亚策1(), 孙俊民1,2()
1.内蒙古工业大学化工学院 呼和浩特 010051
2.大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 鄂尔多斯 010300
Glycidyl Methacrylate Polymer Grafting on Regenerated Cellulose Membrane Surface by Atom Transfer Radical Polymerization
GAO Ying1, WANG Junbo1, MI Yace1(), SUN Junmin1,2()
1.College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Datang International Power Generation Co, Ltd. High Aluminum Coal Resources Development and Utilization R D Center, Ordos 010300, China
引用本文:

高英, 王军波, 米亚策, 孙俊民. 原子转移自由基聚合(ATRP)再生纤维素膜的表面PGMA接枝改性[J]. 材料研究学报, 2025, 39(9): 694-700.
Ying GAO, Junbo WANG, Yace MI, Junmin SUN. Glycidyl Methacrylate Polymer Grafting on Regenerated Cellulose Membrane Surface by Atom Transfer Radical Polymerization[J]. Chinese Journal of Materials Research, 2025, 39(9): 694-700.

全文: PDF(9981 KB)   HTML
摘要: 

利用原子转移自由基聚合(ATRP)在再生纤维素膜材表面接枝聚甲基丙烯酸缩水甘油酯(PGMA),研究了引发剂(2-溴异丁酰溴,BIBBr)的投加量、反应温度、单体(甲基丙烯酸缩水甘油酯,GMA)以及催化剂(溴化亚铜,CuBr)用量等参数对接枝效果的影响。结果表明:BIBBr的用量关联于表面接枝引发剂的密度,进而可调控GMA接枝率。在优化条件下,即以3倍于羟基当量的BIBBr作为引发剂,GMA用量设定为17.83 mmol,CuBr用量为0.18 mmol,在60 ℃反应可得到高达10.51% (质量分数)的接枝率和12.63 μmol/g的环氧值。

关键词 材料表面与界面再生纤维素膜原子转移自由基聚合(ATRP)聚甲基丙烯酸缩水甘油酯(PGMA)环氧基团    
Abstract

As an advanced technique capable of finely regulating the properties of materials, the controllable grafting technique has gradually become a research hotspot in the field of material science and technology due to its high flexibility and customization. In this study, the regenerated cellulose membrane was surface grafted with poly glycidyl methacrylate (PGMA) via controllable grafting technique by taking 2-bromoisobutyryl bromide (BIBBr) as initiator and CuBr as catalyst. The effect of several key parameters on the grafting effect were systematically investigated, including dosages of initiator BIBBr, monomer GMA and catalyst, CuBr as well as the reaction temperature. The aim is to introduce epoxy groups in a controllable manner and pave the way for downstream separation and purification. The results show that the amount of initiator BIBBr is directly related to the density of the surface grafted initiator, which can effectively control the grafting rate of GMA. By the optimized conditions, i.e., the dose of initiator BIBBr, which is 3 times of the hydroxyl equivalent, the dose of GMA 17.83 mmol, and of CuBr 0.18 mmol, while the reaction at 60 °C, the grafting reaction may result in a grafting rate up to 10.51% (mass fraction) with an epoxy value 12.63 μmol/g. This study provides an important reference for the functional design of cellulose membranes.

Key wordssurface and interface in the materials    regenerated cellulose membrane    atom transfer radical polymerization    poly (glycidyl methacrylate)    epoxy group
收稿日期: 2024-08-15     
ZTFLH:  O69  
基金资助:国家自然科学基金(22365023);准格尔旗应用技术研究开发项目(2023YY-03)
通讯作者: 米亚策,副教授,miyacetx@163.com,研究方向为高分子材料设计、制备与应用;
孙俊民,高级工程师,fangwq_2005@163.com,研究方向为高铝煤炭资源开发利用
Corresponding author: MI Yace, Tel: 18004853459, E-mail: miyacetx@163.com;
SUN Junmin, Tel: 18947196196, E-mail: fangwq_2005@163.com
作者简介: 高 英,男,2001年生,硕士生
Sample numberTemperature / oCDMAP / mmolBIBBr / mmolTEA / mL
RC-BiB(I1)304.408.911.00
RC-BiB(I2)13.37
RC-BiB(I3)17.83
表1  固定引发剂过程中各组分的用量
Sample numberTemperature / oCGMA / mmolCuBr / mmolPMEDTA/ mmol
RC-BiB(I2N1)5017.830.090.40
RC-BiB(I2N2)6017.830.09
RC-BiB(I2N3)7017.830.09
RC-BiB(I2N4)6013.370.09
RC-BiB(I2N5)6022.280.09
RC-BiB(I2N6)6017.830.13
RC-BiB(I2N7)6017.830.18
表2  GMA接枝过程中反应温度和各组分用量
图1  基于ATRP技术的再生纤维素膜表面接枝PGMA的技术路线
图2  RC、RC- BiB、RC- BiB和RC- BiB的FTIR光谱
图3  引发剂固定再生纤维素膜(RC-BiB(I2))的SEM照片和EDS图像
图4  接枝PGMA前后再生纤维素膜的SEM照片
图5  接枝PGMA前后再生纤维素膜的FTIR光谱
RC-BiB(I2N1)RC-BiB(I2N2)RC-BiB(I2N3)RC-BiB(I2N4)RC-BiB(I2N5)RC-BiB(I2N6)RC-BiB(I2N7)
Epoxy value / μmol·g-12.195.375.382.455.428.5712.63
Percent grafting / %2.034.864.872.294.917.1310.51

Epoxy value

standard deviation

0.030.030.050.270.020.020.18

Percent grafting

standard deviation

0.050.030.090.030.060.130.25
表3  PGMA改性再生纤维素膜样品的环氧值和接枝率
[1] Liu Y H, Li S B, Wang Z Y, et al. Ultrasound in cellulose-based hydrogel for biomedical use: from extraction to preparation [J]. Colloids Surf., 2022, 212B: 112368
[2] Kang H L, Liu R G, Huang Y. Graft modification of cellulose: methods, properties and applications [J]. Polymer, 2015, 70: A1
[3] Bayramoglu G, Arica M Y. Grafting of regenerated cellulose films with fibrous polymer and modified into phosphate and sulfate groups: application for removal of a model azo-dye [J]. Colloids Surf., 2021, 614A: 126173
[4] Pan K, Zhang X W, Cao B. Surface‐initiated atom transfer radical polymerization of regenerated cellulose membranes with thermo‐responsive properties [J]. Polym. Int., 2010, 59(6): 733
[5] Pan K, Zhang X W, Ren R M, et al. Double stimuli-responsive membranes grafted with block copolymer by ATRP method [J]. J. Membr. Sci., 2010, 356(1-2): 133
[6] Ye J L, Chu J C, Yin J, et al. Surface modification of regenerated cellulose membrane based on thiolactone chemistry-a novel platform for mixed mode membrane adsorbers [J]. Appl. Surf. Sci., 2020, 511: 145539
[7] Qiu X Y, Ren X Q, Hu S W. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP [J]. Carbohydr. Polym., 2013, 92(2): 1887
[8] Yang X Q, Li N, Constantinesco I, et al. Choline phosphate functionalized cellulose membrane: a potential hemostatic dressing based on a unique bioadhesion mechanism [J]. Acta Biomater., 2016, 40: 212
doi: S1742-7061(16)30307-5 pmid: 27345136
[9] Chmielarz P, Fantin M, Park S, et al. Electrochemically mediated atom transfer radical polymerization (eATRP) [J]. Prog. Polym. Sci., 2017, 69: 47
[10] Krys P, Matyjaszewski K. Kinetics of atom transfer radical polymerization [J]. Eur. Polym. J., 2017, 89: 482
[11] Matyjaszewski K. Atom transfer radical polymerization: from mechanisms to applications [J]. Isr. J. Chem., 2012, 52(3‐4): 206
[12] Macior A, Zaborniak I, Chmielarz P, et al. A new protocol for ash wood modification: synthesis of hydrophobic and antibacterial brushes from the wood surface [J]. Molecules, 2022, 27(3): 890
[13] Zaborniak I, Chmielarz P, Matyjaszewski K. Modification of wood-based materials by atom transfer radical polymerization methods [J]. Eur. Polym. J., 2019, 120: 109253
[14] Zaborniak I, Macior A, Chmielarz P, et al. Hydrophobic modification of fir wood surface via low ppm ATRP strategy [J]. Polymer, 2021, 228: 123942
[15] Zhang Z, Sèbe G, Hou Y L, et al. Grafting polymers from cellulose nanocrystals via surface‐initiated atom transfer radical polymerization [J]. J. Appl. Polym. Sci., 2021, 138(48): 51458
[16] Zhang J, Liu H, Liu H, et al. Using diethylamine as crosslinking agent for getting polyepichlorohydrin-based composite membrane with high tensile strength and good chemical stability [J]. Polym. Bull., 2017, 74(3): 625
[17] Wang J, Sproul R T, Anderson L S, et al. Development of multimodal membrane adsorbers for antibody purification using atom transfer radical polymerization [J]. Polymer, 2014, 55(6): 1404
[18] Qian X L, Fan H, Wang C Z, et al. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly (glycidyl methacrylate) and subsequent derivatization with diethylamine [J]. Appl. Surf. Sci., 2013, 271: 240
[19] Wang J, Jenkins E W, Robinson J R, et al. A new multimodal membrane adsorber for monoclonal antibody purifications [J]. J. Membr. Sci., 2015, 492: 137
[20] Yu H S, Kim J S, Vasu V, et al. Cu-mediated butadiene ATRP [J]. ACS Catal., 2020, 10(12): 6645
[21] Fantin M, Tognella E, Antonello A, et al. Effects of solvent and monomer on the kinetics of radical generation in atom transfer radical polymerization [J]. Chem Electro Chem, 2024, 11(6): e202300662
[22] Dworakowska S, Lorandi F, Gorczyński A, et al. Toward green atom transfer radical polymerization: current status and future challenges [J]. Adv. Sci., 2022, 9(19): 2106076
[23] Flejszar M, Chmielarz P, Smenda J, et al. Following principles of green chemistry: low ppm photo-ATRP of DMAEMA in water/ethanol mixture [J]. Polymer, 2021, 228: 123905
[24] Chmielarz P, Sobkowiak A. Ultralow ppm seATRP synthesis of PEO-b-PBA copolymers [J]. J. Polym. Res., 2017, 24: 77
[1] 彭怡和, 欧宝立, 彭勇洁, 温乜一, 程天宇, 陈迪名. CeO2-GO/EP防腐复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 259-271.
[2] 李庆鹏, 刘佳兴, 安晓云, 李永志, 高萌, 孙洪涛, 王娜. 镀锌紧固件表面硅烷转化膜的制备和性能[J]. 材料研究学报, 2025, 39(4): 296-304.
[3] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.
[4] 王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
[5] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[6] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[7] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[8] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[9] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[10] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[11] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[12] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[13] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
[14] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[15] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.