Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 63-70    DOI: 10.11901/1005.3093.2024.137
  研究论文 本期目录 | 过刊浏览 |
聚氨酯基复合弹性体阳极键合阴极材料的性能
赵浩成1(), 姚志广2, 尤雪瑞1, 赵丽芝1
1 山西能源学院能源化学与材料工程系 晋中 030600
2 山西能源学院机电工程系 晋中 030600
Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding
ZHAO Haocheng1(), YAO Zhiguang2, YOU Xuerui1, ZHAO Lizhi1
1 Faculty of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong 030600, China
2 Faculty of Mechanical and Electrical Engineering, Shanxi Institute of Energy, Jinzhong 030600, China
引用本文:

赵浩成, 姚志广, 尤雪瑞, 赵丽芝. 聚氨酯基复合弹性体阳极键合阴极材料的性能[J]. 材料研究学报, 2025, 39(1): 63-70.
Haocheng ZHAO, Zhiguang YAO, Xuerui YOU, Lizhi ZHAO. Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding[J]. Chinese Journal of Materials Research, 2025, 39(1): 63-70.

全文: PDF(8531 KB)   HTML
摘要: 

在室温浇注成型制备出三种聚氨酯基复合弹性体阳极键合阴极材料(CPUEEs)。聚氨酯微相呈分离形态,CPUEEs的Td, 5%都高于200 ℃,其热稳定性可满足阳极键合要求。CPUEEs具有无定形结构,Tg都低于-45 ℃,其分子链段具有良好的低温柔顺性,可为阳极键合锂离子迁移提供必要的通道。所有的CPUEEs样品在键合温度的离子导电率都符合键合的要求。PPC和SN共混改性的CPUEE3离子导电率最大,可达6.5 × 10-4 S·cm-1。进行热引导动态场阳极键合可实现CPUEEs和铝箔(Al)的阳极键合连接,CPUEEs-Al键合界面键合层的键合强度为1.15 MPa。

关键词 有机高分子材料阳极键合聚氨酯离子导电率柔性器件封装    
Abstract

The application of anodic bonding, as an important technology in the semiconductor industry, in the field of flexible electronics encapsulation will be beneficial to the further popularization of the commercialization of flexible devices. The key solution is the preparation of high-performance polymer flexible substrates suitable for anodic bonding. Herein, three kinds of polyurethane-based composite elastomer cathodic materials (CPUEEs) for anodic bonding are prepared by room temperature casting, of which the microphase separation morphology can be observed by SEM. Results show that the CPUEEs present Td, 5% above 200 oC with thermal stability meets the requirements of anodic bonding, besides, the CPUEEs present amorphous structure with Tg lower than -45 oC, and their molecular segments have good low temperature flexibility, which can provide the necessary space for lithium ion migration during anodic bonding. The ionic conductivity of all samples at the bonding temperature meets the bonding requirements, and the ionic conductivity value of CPUEE3 modified by blending with PPC and SN is the highest up to 6.5 × 10-4 S·cm-1. The anodic bonding of CPUEEs and aluminum foil (Al) may be realized by heat-guided dynamic field anodic bonding technique. The bonding interface of CPUEEs-Al can be clearly observed in the SEM image, and the bonding strength of CPUEE3-Al can reach up to 1.15 MPa.

Key wordsorganic ploymer materials    anodic bonding    polyurethane    ionic conductivity    flexible electronic device    encapsulation
收稿日期: 2024-04-01     
ZTFLH:  TB34  
基金资助:国家自然科学基金(22306116);山西省基础研究计划(202203021211284)
通讯作者: 赵浩成,副教授,zhaohc@sxie.edu.cn,研究方向为柔性器件封装
Corresponding author: ZHAO Haocheng, Tel: 18835184666, E-mail: zhaohc@sxie.edu.cn
作者简介: 赵浩成,男,1985年生,博士
SamplenTMP / nBDOPPC-LiTFSI / %SN-LiTFSI / %
CPUEE10.25∶0.6500
CPUEE20.25∶0.65100
CPUEE30.25∶0.651015
表1  CPUEEs的组成
图1  CPUEEs阴极材料的SEM照片
图2  CPUEEs阴极材料的XRD谱
图3  CPUEEs的TGA和DSC曲线
SampleTg / oCTd, 5% / oCRb / Ω(55 oC)σ / S·cm-1(55 oC)
CPUEE1-48.072352923.4 × 10-4
CPUEE2-48.312542404.2 × 10-4
CPUEE3-49.652271546.5 × 10-4
表2  CPUEEs的热性能和离子导电率
图4  CPUEEs在55 ℃的交流阻抗谱
图5  CPUEEs-Al阳极键合示意图
图6  CPUEEs-Al静电键合的时间-电流曲线
SamplePeak current / mABonding time / sMax load / NS/ mm2Tensile strength / MPa
CPUEE1-Al10.36329.5450.240.58
CPUEE2-Al11.66138.1350.240.76
CPUEE3-Al13.78057.9250.241.15
表3  CPUEEs-Al的阳极键合峰值电流、键合时间和界面强度
图7  CPUEEs-Al键合界面的SEM照片
图8  CPUEE3-Al阳极键合界面的EDS图
1 Yadav B, Mondal I, Bannur B, et al. Emulating learning behavior in a flexible device with self-formed Ag dewetted nanostructure as active element [J]. Nanotechnol., 2023, 35(1): 015205
2 Zheng Y, Cui T, Wang J, et al. Unveiling innovative design of customizable adhesive flexible devices from self-healing ionogels with robust adhesion and sustainability [J]. Chem. Eng. J., 2023, 471: 144617
3 Fu C, Liang L, Zhong H, et al. High stretchable and self-adhesive dual networks ionic gels and flexible devices application [J]. Polymer, 2023, 272: 125834
4 Han Y, Cui Y, Liu X, et al. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices [J]. Biosensors, 2023, 13(9): 896
5 Li W, Feng Z, Kechao L, et al. Nano-copper enhanced flexible device for simultaneous measurement of human respiratory and electro-cardiac activities [J]. J. Nanobiotechnol., 2020, 18(7): 447
6 Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
7 Yao F R, Pan M Q, Zhu Z J, et al. Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge [J]. J. Cent. South Univ., 2021, 28: 351
8 Knapkiewicz P. Ultra-low temperature anodic bonding of silicon and borosilicate glass [J]. Semicond. Sci. Technol., 2019, 34: 035005
9 Joyce R, George M, Bhanuprakash L, et al. Investigation on the effects of low-temperature anodic bonding and its reliability for MEMS packaging using destructive and non-destructive techniques [J]. J Mater Sci: Mater Electron, 2018, 29: 217
10 Szesz E M, Lepienski C M. Anodic bonding of titanium alloy with bioactive glass [J]. J. Non-Cryst. Solids, 2017: 471: 19
11 Zhang W X, Wang M X, Zhao H C, et al. Synthesis and characterization of electrolyte substrate materials based on hyperbranched polyurethane elastomers for anodic bonding [J]. J. Appl. Polym. Sci., 2021, 138: 50872
12 Zhao H C, Zhang W X, Yin X, et al. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding [J]. RSC Adv. 2020, 10: 13267
doi: 10.1039/c9ra10944g pmid: 35492124
13 Zhao H C, Zhang W X, Yin X, et al. TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding [J]. Chem. Pap., 2020, 74: 3975
14 Zhao H C, Liu C R, Du C, et al. Flexible anodic bonding for the bonding between elastomer and metal [J]. J. Appl. Polym. Sci., 2022, 139(33): e52780
15 Zhao H C, Liang F N, Liu Q X, et al. Anodic bonding applied to flexible packaging using elastomer composites [J]. Acta Materiae Compositae Sinica, 2021, 38(1): 111
15 赵浩成, 梁芳楠, 刘茜秀, 等. 应用于弹性体复合材料柔性封装的阳极键合[J]. 复合材料学报, 2021, 38(1): 111
16 Ding W F; Xu L. Batch fabrication of electrospun PAN/PU composite separators for safe lithium-ion batteries [J]. Batteries, 2024, 10: 6
17 Teng Q C, Huang Y, Wu H T, et al. Self-healing polyurethane elastomer with ultra-high mechanical strength and enhanced thermal mechanical properties [J]. Polymer, 2024, 290: 126579
18 Wu Y L, Zhang W X, Qian F, et al. An efficient phenylaminecarbazole-based three-dimensional hole-transporting materials for high-stability perovskite solar cells [J]. Dyes Pigm., 2020, 182: 108663
19 Mundinamani S. The choice of noble electrolyte for symmetric polyurethane-graphene composite supercapacitors [J]. Int. J. Hydrogen Energy, 2019, 44: 11240
20 Jee C H, Kang K S, Bae J H, et al. Ladder-type poly(3,4-ethylenedioxythiophene)-poly(ethyleneglycol)-polyurethane supramolecular network for gel polymer electrolyte [J]. Polym.-Plast. Technol. Eng., 2018, 57: 1518
21 Wang M X, Wei X Z, Zhang W X, et al. Fluorene-containing polyhedral oligomericsilsesquioxanes modified hyperbranched polymer for white light-emitting diodes with ultra-high color rendering index of 96 [J]. J. Solid State Chem., 2021, 298: 122122
22 Kopczynska P, Calvo-Correas T, Eceiza A, et al. Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling [J]. Eur. Polym. J., 2016: 85: 26
23 Ye J F, Wang F, Zuo Y, et al. Epoxy resin-modified thermo-reversible polyurethane with high strength, toughness, and self-healing performance [J]. Chin. J. Mater. Res., 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
23 叶姣凤, 王 飞, 左 洋 等. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯 [J]. 材料研究学报, 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
24 Zhao X Y; Jin R H; Niu Z H, et al. Fabrication of polyurethane elastomer/hindered phenol composites with tunable damping property [J]. Int. J. Mol. Sci., 2023, 37(04): 257-263
25 Khodaie M, Saeidi A, Khonakdar H A, et al. Improving nanoparticle dispersion and polymer crystallinity in polyvinylidene fluoride/POSS coatings using tetrahydrofuran as co-solvent [J]. Prog. Org. Coat. 2020, 140: 105534
26 Bao J J, Shi G J, Tao C, et al. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries [J]. J. Power Sources, 2018, 389: 84
27 Du C, Liu C R, Yin X, et al. Effect of rare earth oxide CeO2 on the anodic bonding performance of PEG-based MEMS encapsulation materials [J]. Adv. Mech. Eng., 2021, 13: 16878140211007712
28 Pautkin V E. Physicochemical processes in alkaline glass with anodic bonding of glass and silicon [J]. Glass Ceram., 2021, 77: 329
29 Liu Y F, Dai T T, Xie P Q, et al. Shorting out bonding method for multi-stack anodic bonding and its application in wafer-level packaging [J]. Mod. Phys. Lett. B, 2020, 34: 2050369
30 Gao C W, Yang F, Zhang D C. Modeling of anodic bonding with SiO2 dielectric as interlayer [J]. J. Micromech. Microeng., 2020, 30: 105003
31 Behera B, Dhanekar S, Singh G, et al. Self-encapsulated DC MEMS switch using recessed cantilever beam and anodic bonding between silicon and glass [J]. Microsyst. Technol., 2020, 27: 863
32 Woetzel S, Ihring A, Kessler E, et al. Hermetic sealing of MEMS including lateral feed throughs and room-temperature anodic bonding [J]. J. Micromech. Microeng., 2018, 28: 075013
33 Wan Y J, Li Z W, Huang Z L, et al. Wafer-level self-packaging design and fabrication of mems capacitive pressure sensors [J]. Micromachines, 2022, 13(5): 738
34 Yu M Z, Chen Y, Wang Y B, et al. Plasma-activated high-strength non-isothermal anodic bonding for efficient fabrication of the micro atomic vapor cells [J]. J. Mater. Res. Technol., 2023, 27, 1046
35 Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock [J]. Appl. Sci., 2022, 12(1): 436
36 Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
[1] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] 姜帆, 李琬桐, 赵树发, 石宁, 张梦霞, 方庆红, 李东翰. 高性能液体端羧基氟橡胶的氟化加成反应合成[J]. 材料研究学报, 2025, 39(1): 11-20.
[3] 周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
[4] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] 敖霜霜, 徐嘉晨, 王宇作, 阮殿波, 乔志军. 聚乳酸基硬碳的制备及其电化学性能研究[J]. 材料研究学报, 2024, 38(11): 811-820.
[6] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[7] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[11] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[12] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[13] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
[14] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[15] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.