|
|
聚氨酯基复合弹性体阳极键合阴极材料的性能 |
赵浩成1( ), 姚志广2, 尤雪瑞1, 赵丽芝1 |
1 山西能源学院能源化学与材料工程系 晋中 030600 2 山西能源学院机电工程系 晋中 030600 |
|
Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding |
ZHAO Haocheng1( ), YAO Zhiguang2, YOU Xuerui1, ZHAO Lizhi1 |
1 Faculty of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong 030600, China 2 Faculty of Mechanical and Electrical Engineering, Shanxi Institute of Energy, Jinzhong 030600, China |
引用本文:
赵浩成, 姚志广, 尤雪瑞, 赵丽芝. 聚氨酯基复合弹性体阳极键合阴极材料的性能[J]. 材料研究学报, 2025, 39(1): 63-70.
Haocheng ZHAO,
Zhiguang YAO,
Xuerui YOU,
Lizhi ZHAO.
Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding[J]. Chinese Journal of Materials Research, 2025, 39(1): 63-70.
1 |
Yadav B, Mondal I, Bannur B, et al. Emulating learning behavior in a flexible device with self-formed Ag dewetted nanostructure as active element [J]. Nanotechnol., 2023, 35(1): 015205
|
2 |
Zheng Y, Cui T, Wang J, et al. Unveiling innovative design of customizable adhesive flexible devices from self-healing ionogels with robust adhesion and sustainability [J]. Chem. Eng. J., 2023, 471: 144617
|
3 |
Fu C, Liang L, Zhong H, et al. High stretchable and self-adhesive dual networks ionic gels and flexible devices application [J]. Polymer, 2023, 272: 125834
|
4 |
Han Y, Cui Y, Liu X, et al. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices [J]. Biosensors, 2023, 13(9): 896
|
5 |
Li W, Feng Z, Kechao L, et al. Nano-copper enhanced flexible device for simultaneous measurement of human respiratory and electro-cardiac activities [J]. J. Nanobiotechnol., 2020, 18(7): 447
|
6 |
Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
|
7 |
Yao F R, Pan M Q, Zhu Z J, et al. Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge [J]. J. Cent. South Univ., 2021, 28: 351
|
8 |
Knapkiewicz P. Ultra-low temperature anodic bonding of silicon and borosilicate glass [J]. Semicond. Sci. Technol., 2019, 34: 035005
|
9 |
Joyce R, George M, Bhanuprakash L, et al. Investigation on the effects of low-temperature anodic bonding and its reliability for MEMS packaging using destructive and non-destructive techniques [J]. J Mater Sci: Mater Electron, 2018, 29: 217
|
10 |
Szesz E M, Lepienski C M. Anodic bonding of titanium alloy with bioactive glass [J]. J. Non-Cryst. Solids, 2017: 471: 19
|
11 |
Zhang W X, Wang M X, Zhao H C, et al. Synthesis and characterization of electrolyte substrate materials based on hyperbranched polyurethane elastomers for anodic bonding [J]. J. Appl. Polym. Sci., 2021, 138: 50872
|
12 |
Zhao H C, Zhang W X, Yin X, et al. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding [J]. RSC Adv. 2020, 10: 13267
doi: 10.1039/c9ra10944g
pmid: 35492124
|
13 |
Zhao H C, Zhang W X, Yin X, et al. TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding [J]. Chem. Pap., 2020, 74: 3975
|
14 |
Zhao H C, Liu C R, Du C, et al. Flexible anodic bonding for the bonding between elastomer and metal [J]. J. Appl. Polym. Sci., 2022, 139(33): e52780
|
15 |
Zhao H C, Liang F N, Liu Q X, et al. Anodic bonding applied to flexible packaging using elastomer composites [J]. Acta Materiae Compositae Sinica, 2021, 38(1): 111
|
15 |
赵浩成, 梁芳楠, 刘茜秀, 等. 应用于弹性体复合材料柔性封装的阳极键合[J]. 复合材料学报, 2021, 38(1): 111
|
16 |
Ding W F; Xu L. Batch fabrication of electrospun PAN/PU composite separators for safe lithium-ion batteries [J]. Batteries, 2024, 10: 6
|
17 |
Teng Q C, Huang Y, Wu H T, et al. Self-healing polyurethane elastomer with ultra-high mechanical strength and enhanced thermal mechanical properties [J]. Polymer, 2024, 290: 126579
|
18 |
Wu Y L, Zhang W X, Qian F, et al. An efficient phenylaminecarbazole-based three-dimensional hole-transporting materials for high-stability perovskite solar cells [J]. Dyes Pigm., 2020, 182: 108663
|
19 |
Mundinamani S. The choice of noble electrolyte for symmetric polyurethane-graphene composite supercapacitors [J]. Int. J. Hydrogen Energy, 2019, 44: 11240
|
20 |
Jee C H, Kang K S, Bae J H, et al. Ladder-type poly(3,4-ethylenedioxythiophene)-poly(ethyleneglycol)-polyurethane supramolecular network for gel polymer electrolyte [J]. Polym.-Plast. Technol. Eng., 2018, 57: 1518
|
21 |
Wang M X, Wei X Z, Zhang W X, et al. Fluorene-containing polyhedral oligomericsilsesquioxanes modified hyperbranched polymer for white light-emitting diodes with ultra-high color rendering index of 96 [J]. J. Solid State Chem., 2021, 298: 122122
|
22 |
Kopczynska P, Calvo-Correas T, Eceiza A, et al. Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling [J]. Eur. Polym. J., 2016: 85: 26
|
23 |
Ye J F, Wang F, Zuo Y, et al. Epoxy resin-modified thermo-reversible polyurethane with high strength, toughness, and self-healing performance [J]. Chin. J. Mater. Res., 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
|
23 |
叶姣凤, 王 飞, 左 洋 等. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯 [J]. 材料研究学报, 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
|
24 |
Zhao X Y; Jin R H; Niu Z H, et al. Fabrication of polyurethane elastomer/hindered phenol composites with tunable damping property [J]. Int. J. Mol. Sci., 2023, 37(04): 257-263
|
25 |
Khodaie M, Saeidi A, Khonakdar H A, et al. Improving nanoparticle dispersion and polymer crystallinity in polyvinylidene fluoride/POSS coatings using tetrahydrofuran as co-solvent [J]. Prog. Org. Coat. 2020, 140: 105534
|
26 |
Bao J J, Shi G J, Tao C, et al. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries [J]. J. Power Sources, 2018, 389: 84
|
27 |
Du C, Liu C R, Yin X, et al. Effect of rare earth oxide CeO2 on the anodic bonding performance of PEG-based MEMS encapsulation materials [J]. Adv. Mech. Eng., 2021, 13: 16878140211007712
|
28 |
Pautkin V E. Physicochemical processes in alkaline glass with anodic bonding of glass and silicon [J]. Glass Ceram., 2021, 77: 329
|
29 |
Liu Y F, Dai T T, Xie P Q, et al. Shorting out bonding method for multi-stack anodic bonding and its application in wafer-level packaging [J]. Mod. Phys. Lett. B, 2020, 34: 2050369
|
30 |
Gao C W, Yang F, Zhang D C. Modeling of anodic bonding with SiO2 dielectric as interlayer [J]. J. Micromech. Microeng., 2020, 30: 105003
|
31 |
Behera B, Dhanekar S, Singh G, et al. Self-encapsulated DC MEMS switch using recessed cantilever beam and anodic bonding between silicon and glass [J]. Microsyst. Technol., 2020, 27: 863
|
32 |
Woetzel S, Ihring A, Kessler E, et al. Hermetic sealing of MEMS including lateral feed throughs and room-temperature anodic bonding [J]. J. Micromech. Microeng., 2018, 28: 075013
|
33 |
Wan Y J, Li Z W, Huang Z L, et al. Wafer-level self-packaging design and fabrication of mems capacitive pressure sensors [J]. Micromachines, 2022, 13(5): 738
|
34 |
Yu M Z, Chen Y, Wang Y B, et al. Plasma-activated high-strength non-isothermal anodic bonding for efficient fabrication of the micro atomic vapor cells [J]. J. Mater. Res. Technol., 2023, 27, 1046
|
35 |
Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock [J]. Appl. Sci., 2022, 12(1): 436
|
36 |
Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|