Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 861-871    DOI: 10.11901/1005.3093.2023.498
  研究论文 本期目录 | 过刊浏览 |
氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能
李玉峰1,2(), 冯峰1, 刘世博1, 刘丽爽1, 高晓辉1
1 齐齐哈尔大学化学与化学工程学院 齐齐哈尔 161006
2 齐齐哈尔大学轻工与纺织学院 齐齐哈尔 161006
Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin
LI Yufeng1,2(), FENG Feng1, LIU Shibo1, LIU Lishuang1, GAO Xiaohui1
1 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
2 College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
引用本文:

李玉峰, 冯峰, 刘世博, 刘丽爽, 高晓辉. 氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能[J]. 材料研究学报, 2024, 38(11): 861-871.
Yufeng LI, Feng FENG, Shibo LIU, Lishuang LIU, Xiaohui GAO. Preparation of Nitrogen and Phosphorus Co-doped Graphene Oxide and Corrosion Resistance of Waterborne Composite Coatings NPGO/Epoxy Resin[J]. Chinese Journal of Materials Research, 2024, 38(11): 861-871.

全文: PDF(14854 KB)   HTML
摘要: 

以氧化石墨烯(GO)为原料,植酸(PA)为磷源,氨水(NH3·H2O)为氮源,采用低温溶液法制备氮磷石墨烯(NPGO),并以水性环氧树脂(EP)为成膜物制备氮磷石墨烯/环氧树脂(NPGO/EP)水性复合涂层。采用FTIR、XPS、XRD、SEM和TEM对NPGO的结构、形貌进行了表征。通过接触角测试、电化学测试和盐雾实验等研究复合涂层的耐蚀性能。结果表明:相比于EP涂层、GO/EP复合涂层、含磷石墨烯/环氧树脂(PGO/EP)复合涂层和含氮石墨烯/环氧树脂(NGO/EP)复合涂层,NPGO/EP复合涂层对金属的保护作用更好;当NPGO的添加量为1.5% (质量分数)时,电化学阻抗达到4.85 × 108 Ω·cm2,盐雾实验480 h后才出现轻微腐蚀,表现出较好的防腐蚀性能。

关键词 材料失效与保护耐蚀性能氮磷石墨烯水性环氧树脂复合涂层    
Abstract

N and P co-doped graphene oxide (NPGO) was prepared by low temperature solution method with graphene oxide (GO) as raw material, phytic acid (PA) as P source, and aqueous ammonia solution (NH3·H2O) as N source, and then, N and P co-doped graphene/epoxy resin (NPGO/EP) waterborne composite coating was prepared by using waterborne epoxy resin (EP) as the film former. The structure and morphology of NPGO were characterized by FTIR, XPS, XRD, SEM and TEM. The corrosion resistance of composite coatings was assessed by contact angle measurement, electrochemical measurement and salt spray test. The results show that NPGO/EP composite coating has better metal protection effect than pure EP coating, GO/EP composite coating, as well as single P doped graphene/epoxy resin (PGO/EP) composite coating and single N doped graphene/epoxy resin (NGO/EP) composite coating. NPGO/EP composite coating showing good corrosion resistance when the addition amount of NPGO is 1.5% (mass fraction): the electrochemical impedance reaches 4.85 × 108 Ω·cm2, and slight rust marks appear only after 480 h of salt spray test.

Key wordsmaterials failure and protection    corrosion resistance    nitrogen-phosphorus graphene    waterborne epoxy resin    composite coating
收稿日期: 2023-10-11     
ZTFLH:  TB304  
基金资助:黑龙江省省属高等学校基本科研业务费科研项目(135509128)
通讯作者: 李玉峰,教授,lyf1170@163.com,研究方向为防腐蚀功能涂层材料
Corresponding author: LI Yufeng, Tel: 15145240877, E-mail: lyf1170@163.com
作者简介: 李玉峰,男,1970年生,博士
图1  NPGO合成路线示意图
GOPGONGONPGONPGONPGONPGO
Amount / g0.030.030.030.010.020.030.04
Content / %1.51.51.50.51.01.52.0
表1  不同复合涂层石墨烯用量
图2  GO、PGO和NPGO的红外光谱图
图3  NPGO的XPS谱图
图4  GO、PGO和NPGO的XRD图
图5  GO、PGO和NPGO的SEM照片
图6  GO、PGO和NPGO的TEM照片
图7  NPGO含量对复合涂层接触角和吸水率的影响
图8  不同填料对涂层附着力的影响
图9  EP涂层和GO/EP、NGO/EP、PGO/EP、NPGO/EP复合涂层在3.5% (质量分数) NaCl溶液中浸泡24 h后的Nyquist和Bode图
SampleRs / Ω·cm2Rc / Ω·cm2CPEcRct / Ω·cm2CPEdl
Y0 / Ω·cm-2·s nncY0 / Ω·cm-2·s nnc
EP356731.32 × 1068.12 × 10-91.4423.72 × 1064.25 × 10-90.7936
GO/EP282541.03 × 1081.35 × 10-100.93581.04 × 1076.13 × 10-100.8393
NGO/EP322612.61 × 1084.02 × 10-100.77543.97 × 1072.66 × 10-111.986
PGO/EP264772.52 × 1082.65 × 10-100.93642.78 × 1071.93 × 10-100.9238
NPGO/EP328703.98 × 1082.39 × 10-100.81454.41 × 1072.22 × 10-101.071
表2  EIS拟合数据
图10  电化学阻抗数据拟合等效电路
图11  不同含量的NPGO/EP复合涂层在3.5%NaCl溶液中浸泡不同时间的Nyquist和Bode图
图12  不同涂层经不同时间的盐雾实验后的宏观形貌照片
图13  NPGO/EP复合涂层防腐蚀机理示意图
1 Kang D, Lee M, Lee S J, et al. Enhanced adhesion and corrosion resistance of reduced graphene oxide coated-steel with iron oxide nanoparticles [J]. Appl. Surf. Sci., 2023, 624: 157121
2 Jiang D, Huang G S, Ma L, et al. Research progress of bionic surface/coating in metal corrosion protection [J]. Surf. Technol., 2022, 51(6): 180
2 姜 丹, 黄国胜, 马 力 等. 仿生表面/涂层在金属腐蚀防护中的研究进展 [J]. 表面技术, 2022, 51(6): 180
3 Ding J H, Rahman O U, Peng W J, et al. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne graphene/epoxy coatings [J]. Appl. Surf. Sci., 2018, 427: 981
4 Gao X Z, Liu H J, Cheng F, et al. Thermoresponsive polyaniline nanoparticles: preparation, characterization, and their potential application in waterborne anticorrosion coatings [J]. Chem. Eng. J., 2016, 283: 682
5 Tang G W, Ren T T, Yan Z S, et al. Corrosion resistance of a self-curing waterborne epoxy resin coating [J]. J. Coat. Technol. Res., 2019, 16(3): 895
doi: 10.1007/s11998-018-00166-2
6 Wang C J, Wang Z H, Liu S P, et al. Anti-corrosion and wear-resistant coating of waterborne epoxy resin by concrete-like three-dimensional functionalized framework fillers [J]. Chem. Eng. Sci., 2021, 242: 116748
7 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32(5): 425
doi: 10.1016/j.jmst.2015.12.017
8 Malhotra R, Han Y M, Nijhuis C A, et al. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy [J]. Dent. Mater., 2021, 37(10): 1553
doi: 10.1016/j.dental.2021.08.004 pmid: 34420797
9 Zhang T T, Zhang Y K, Chen C, et al. Corrosion-resistant SiO2-graphene oxide/epoxy coating reinforced by effective electron beam curing [J]. Prog. Org. Coat., 2023, 184: 107885
10 Chen H Y, Yu Q Q, Yang J J, et al. Preparation of amino-functionalized graphene oxide/sulfonated polyaniline and its application in waterborne epoxy anticorrosive coatings [J]. Fine Chem., 2022, 39(4): 837
10 陈虹雨, 于倩倩, 杨建军 等. 氨基化氧化石墨烯/磺化聚苯胺的制备及在水性环氧防腐涂料的应用 [J]. 精细化工, 2022, 39(4): 837
11 Grajewska K, Lieder M. Functionalization of graphene oxide coatings with phosphorus atoms and their corrosion resistance in sodium chloride environment [J]. Diamond Relat. Mater., 2021, 118: 108533
12 Wang N, Gao H Y, Zhang J, et al. Phytic acid intercalated graphene oxide for anticorrosive reinforcement of waterborne epoxy resin coating [J]. Polymers, 2019, 11(12): 1950
13 Li Y F, Zhang N F, Liu L S, et al. Preparation of phosphorus-containing graphene and corrosion resistance of composite coating [J]. Chin. J. Mater. Res., 2022, 36(12): 933
doi: 10.11901/1005.3093.2021.556
13 李玉峰, 张念飞, 刘丽爽 等. 含磷石墨烯的制备及复合涂层的耐蚀性能 [J]. 材料研究学报, 2022, 36(12): 933
doi: 10.11901/1005.3093.2021.556
14 Chhetri S, Ghosh S, Samanta P, et al. Effect of Fe3O4-decorated N-doped reduced graphene oxide nanohybrid on the anticorrosion performance of epoxy composite coating [J]. ChemistrySelect, 2019, 4(46): 13446
doi: 10.1002/slct.201902348
15 Ren S M, Cui M J, Li W S, et al. N-doping of graphene: toward long-term corrosion protection of Cu [J]. J. Mater. Chem., 2018, 6A(47) : 24136
16 Ma J Z, Xiang Z H, Zhang J T. Three-dimensional nitrogen and phosphorous co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction [J]. Sci. China Chem., 2018, 61(5): 592
17 Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339
18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Pull-off test for adhesion [S]. Beijing: Standards Press of China, 2007
18 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆拉开法附着力试验 [S]. 北京: 中国标准出版社, 2007
19 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Determination of resistance to neutral salt spray (fog) [S]. Beijing: Standards Press of China, 2007
19 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 耐中性盐雾性能的测定 [S]. 北京: 中国标准出版社, 2007
20 Ghozatloo A, Hosseini M, Shariaty-Niassar M. Improvement and enhancement of natural gas hydrate formation process by Hummers' graphene [J]. J. Nat. Gas Sci. Eng., 2015, 27: 1229
21 Liu X B, Zou S, Liu K X, et al. Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor [J]. J. Power Sources, 2018, 384: 214
22 Shang Y, Xu H Z, Li M Y, et al. Preparation of N-doped graphene by hydrothermal method and interpretation of N-doped mechanism [J]. Nano, 2017, 12(2): 1750018
23 Ollik K, Rybarczyk M, Karczewski J, et al. Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition [J]. Appl. Surf. Sci., 2020, 499: 143914
24 Tan B, Zhao H M, Zhang Y B, et al. Amphiphilic PA-induced three-dimensional graphene macrostructure with enhanced removal of heavy metal ions [J]. J. Colloid Interface Sci., 2018, 512: 853
25 Gao B H, Sun Y, Miao Y C, et al. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes [J]. Analyst, 2020, 145(1): 115
26 Li G F, Li Y W, Deng J X, et al. Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-doped graphene [J]. Mater. Chem. Front., 2020, 4(9): 2704
27 Wu Y, Yang F, Liu X X, et al. Fabrication of N, P-codoped reduced graphene oxide and its application for organic dye removal [J]. Appl. Surf. Sci., 2018, 435: 281
28 Shen X Y, Li X D, Zhao F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application [J]. 2D Mater., 2019, 6(3): 035020
29 Chae S, Panomsuwan G, Bratescu M A, et al. p-type doping of graphene with cationic nitrogen [J]. ACS Appl. Nano Mater., 2019, 2(3): 1350
doi: 10.1021/acsanm.8b02237
30 Saquib M, Bharadwaj A, Kushwaha H S, et al. Chloride corrosion resistant nitrogen doped reduced graphene oxide/platinum electrocatalyst for hydrogen evolution reaction in an acidic medium [J]. ChemistrySelect, 2020, 5(5): 1739
31 Jang D, Lee S, Kim S, et al. Production of P, N co-doped graphene-based materials by a solution process and their electrocatalytic performance for oxygen reduction reaction [J]. ChemNanoMat, 2018, 4(1): 118
32 Tian Y, Wei Z, Zhang K H, et al. Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing [J]. Sens. Actuators, 2017, 241B: 584
33 Li C C, Xu J, Xu Q J, et al. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2022, 165: 106673
34 Zhang R Y, Yu X, Yang Q W, et al. The role of graphene in anti-corrosion coatings: a review [J]. Constr. Build. Mater., 2021, 294: 123613
[1] 景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
[2] 崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
[3] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[4] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[5] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[6] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[7] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[8] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[9] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[10] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[11] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[14] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[15] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.