材料研究学报, 2023, 37(11): 846-854 DOI: 10.11901/1005.3093.2022.589

研究论文

奥氏体耐热钢Sanicro25蠕变行为和断裂特征

吕德超, 曹铁山, 程从前, 周彤彤, 赵杰,

大连理工大学材料科学与工程学院 大连 116024

Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25

LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie,

School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

通讯作者: 赵杰,jiezhao@dlut.edu.cn,研究方向为金属材料蠕变、组织演化、损伤及寿命预测

责任编辑: 黄青

收稿日期: 2022-11-08   修回日期: 2023-05-09  

基金资助: 国家自然科学基金(U1610256)
国家自然科学基金(51901035)

Corresponding authors: ZHAO Jie, Tel:(0411)84709076, E-mail:jiezhao@dlut.edu.cn

Received: 2022-11-08   Revised: 2023-05-09  

Fund supported: National Natural Science Foundation of China(U1610256)
National Natural Science Foundation of China(51901035)

作者简介 About authors

吕德超,男,1992年生,博士生

摘要

用OM、SEM和TEM等方法研究了超超临界电站用Sanicro25钢的蠕变机制。结果表明,这种钢的最小蠕变速率随着温度的升高和应力的增大而提高。根据最小蠕变速率特征得出表观应力指数为7.6~8.2,表观激活能为496.7~531.8 kJ/mol。在蠕变过程中在晶内弥散析出的纳米级Cu-rich相和MX相阻碍位错运动,导致蠕变门槛值应力的出现。用线性外延法求出的门槛值应力,随着温度的升高而减小。用门槛值将蠕变本构方程修正为$\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$,可将不同温度下的最小蠕变速率归一化;同时确定真实应力指数(n=5)和真实表观激活能(Q=286.6 kJ/mol约等于γ-Fe自扩散激活能),从而判别出实验参数下材料的蠕变机制为点阵自扩散协助的位错攀移。

关键词: 金属材料; 蠕变; 变形机制; Sanicro25钢

Abstract

The creep behavior at 130~240 MPa /973~1023 K of Sanicro25 steel for ultra-supercritical power plants were investigated by OM, SEM and TEM. The results showed that the minimum creep rate increases with the increasing temperature and applied stress. Based on the characteristics of the minimum creep rate, the stress exponents of 7.6~8.2 and the apparent activation energy of 496.7~531.8 kJ/mol can be acquired for the creep process. Nano-scale Cu-rich phase and MX phase precipitated in the matrix imped the dislocation motion, thus resulted in the emerging of creep threshold stress. The creep threshold stresses can be estimated by the linear extrapolation method, and which decrease with the increase in temperature. By invoking the concept of the threshold stresses to modify the constitutive equation, $\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$, the normalization of the minimum creep rate can be acquired at various temperatures; Meanwhile, the true stress exponent (n=5) and the true apparent activation energy (Q=286.6kJ/mol approximately equal to the γ-Fe self-diffusion activation energy) can be identified. The creep rate-controlling mechanism was determined to be dislocation climbing mechanism assisted by lattice self-diffusion.

Keywords: metallic materials; creep; deformation mechanism; Sanicro25 steel

PDF (8626KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吕德超, 曹铁山, 程从前, 周彤彤, 赵杰. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征[J]. 材料研究学报, 2023, 37(11): 846-854 DOI:10.11901/1005.3093.2022.589

LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie. Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25[J]. Chinese Journal of Materials Research, 2023, 37(11): 846-854 DOI:10.11901/1005.3093.2022.589

以化石能源为主对电力能源结构进行优化,可实现我国的“碳达峰-碳中和”目标。超超临界火力发电技术的较高稳定性和经济效益,使其能补充绿色电力系统[1,2]。超超临界机组服役温度的提高和压力的升高能提高发电效率和减少碳的排放[3],因此应该高度关注服役材料在高温高压条件下的可靠性。

Sanicro25钢兼具良好的抗氧化性能、抗腐蚀性、可焊性以及优异的高温蠕变性能,是制造下一代超超临界锅炉过热器和再热器的主要候选材料[4~8]。Sanicro25钢,是在传统奥氏体钢中加入W/Co/Cu/Nb元素制备的一种新型奥氏体耐热钢。这种新型高铬、镍奥氏体耐热钢,兼具固溶强化和沉淀强化的高温力学性能。在蠕变过程中Sanicro25钢晶内生成的大量弥散纳米级Cu-rich相和MX相沉淀物(Nb、C和N组成)对位错运动的阻碍以及生成的第二相弥散强化,使其蠕变性能提高[2,8,9]。此外,Sanicro25钢中的置换固溶原子(例如Nb、W等)和间隙固溶原子(C、N)等元素溶入γ-Fe基体产生晶格畸变和固溶强化,可提高其高温力学性能[8,10,11]

超超临界燃煤机组的部件长期在高温高压环境中服役,因此了解材料的蠕变变形特征和机制以确保结构安全,至关重要。Song等[12]基于微观结构演变和颗粒强化机制,提出可预测Sanicro25钢的蠕变变形和长期寿命的位错模型,而且用实验数据验证了这个模型的准确性。Luboš Kloc等 [13]进行Sanicro25钢的低应力蠕变实验时发现,随着应力的增大蠕变的应力指数从n=1转变到n=7,且在不同温度下应力的转变点不同。Zhang等[10,11]表征分析了Sanicro25合金的蠕变析出行为和位错结构的演化特征,并引用蠕变门槛值概念分析出其蠕变机制是点阵自扩散下的粘滞性滑移控制蠕变。

同时,设计火力发电部件时预测蠕变断裂寿命也极为必要。根据实验的短期数据推测部件的长期蠕变寿命,常用的模型有Larson-Miller模型、Monkman-Grant模型和Zc参数[14~16]。了解蠕变机制和组织结构特征也能在一定程度上提高模型的有效性。为了确保材料服役的安全,本文分析蠕变的本构方程、组织结构和断裂特征以深入理解Sanicro25钢的蠕变变形机制。

1 实验方法

实验用Sanicro25钢(奥氏体耐热钢)的名义化学成分(质量分数,%)为:Ni(23.5-26.6)-Cr(21.5-23.5)-W(2.0-4.0)-Cu(2.0-3.5)-Co(1.0-2.0)-Nb(0.30-0.60)-N(0.15-0.30)-C(0.04-0.1)-Mn(0.6)-Si(0.4)-P(0.03)-S(0.015)(最大值)和Fe(余量)。实验用材料是经过固溶(1417~1523 K)处理的无缝钢管(外径为54 mm,壁厚为9 mm)。图1给出了Sanicro25钢的金相组织形貌,可见其由均匀的等轴奥氏体、大量的退火孪晶以及未溶解的富Nb、Cr和N的沉淀颗粒组成[9, 17]

图1

图1   Sanicro25钢的金相组织形貌

Fig.1   Austenitic heat-resistant steel (Sanicro25 steel) OM morphology


用机械蠕变机(RDJ 30)进行材料的一系列蠕变试验,蠕变实验参数列于表1。应力为130~240 MPa,温度为973~1023 K。沿着无缝钢管的轧制方向截取标准蠕变试样,直径为5 mm,标距为25 mm。用OM和TEM等技术表征蠕变后试样的微观结构演变。先将OM测试样品机械研磨和抛光,然后在室温下用HCl (20 mL)+H2O (20 mL)+CuSO4 (5 g)溶液腐蚀。TEM测试样品的制备:用砂纸机械研磨至厚度约50 μm,然后打成直径约为3.0 mm的圆形薄片;最后在10%的高氯酸酒精混合溶液(-25℃)中进行电解双喷。用SEM表征蠕变后断口的表面形貌。

表1   Sanicro25钢的实验参数

Table 1  Experimental parameters of Sanicro25 steel

MaterialTemperature, T / K

Applied stress,

σ / MPa

Sanicro25 steel973180
220
240
998150
180
220
1023130
180
220
240

新窗口打开| 下载CSV


2 实验结果

2.1 Sanicro25钢的蠕变变形行为

图2给出了Sanicro25钢的蠕变和速率曲线。按照蠕变速率的变化趋势,可将蠕变分为三个阶段。第一阶段为瞬时变形以后的应变阶段,蠕变开始时蠕变速率非常大,随后加工硬化产生的变形抗力增大使蠕变速率逐渐降低。随着加工硬化程度的提高高温动态回复速度随之提高,最后加工硬化与回复软化过程达到平衡,蠕变速度达到一个短暂的稳定,此即最小蠕变速率阶段。第三阶段为加速蠕变阶段,蠕变速率加速提高,试样塑性变形增大的同时其内部产生大量蠕变损伤,产生应力集中、空洞以及试样颈缩等不均匀变形[18]。随着加载应力的增大和温度的提高材料的应变速率随之提高,断裂寿命降低。

图2

图2   Sanicro 25钢的蠕变曲线

Fig.2   Creep curve characteristics for Sanicro 25 steel (a) (b) at different applied stresses (c) (d) at different temperatures


2.2 最小蠕变速率与应力、温度的经验关系

材料的蠕变特征,可用最小蠕变速率表征。最小蠕变速率的高低除了与材料的特性相关,还与试验用应力和温度有关。图3给出了Sanicro25钢的蠕变最小速率与应力和温度的关系。在相同温度下最小应变速率与加载应力符合幂律关系(图3a)

图3

图3   Sanicro25钢蠕变最小速率与应力和温度的关系

Fig.3   Minimum creep rate as a function of stress and temperature for Sanicro25 steel (a) Minimum creep rate vs. applied stress; (b) Minimum creep rate vs. the reciprocal of temperature


ε˙min=Aσnaexp(-QaRT)

其中ε˙min为最小蠕变速率,A为常数,σ为加载应力,T为绝对温度,na为表观应力指数,Qa为蠕变表观激活能,R为气体常数。蠕变的表观应力指数范围为7.6~8.2。在应力不变的条件下,最小蠕变速率的对数lnε˙min与绝对温度的倒数1/T成线性关系(图3b)。根据 式(1)可计算出蠕变的表观激活能为496.7~531.8 kJ/mol。根据本文的实验结果计算出的Sanicro25钢的蠕变表观应力指数和激活能,与各种奥氏体不锈钢的数值大致相同[10,19,20]

2.3 蠕变断裂的特征

在不同温度下材料的断裂寿命均随着加载应力增加而下降(图4a),而且在双对数坐标下符合线性关系

图4

图4   Sanicro25钢蠕变断裂寿命与加载应力的关系

Fig.4   Creep fracture life as a function of applied stress for Sanicro25 steel (a) Log-log plot of ruptured time vs. applied stress; (b) Larson-Miller parameter curve


tr=A1σ-n1

其中A1为常数,n1线性指数,tr为蠕变寿命。使用Larson-Miller参数(LMP)关系(P(σ)=T(20+lgtr))拟合材料的断裂寿命数据,可得主曲线(图4b)。可以看出,材料700℃蠕变10万小时的持久强度约为101 MPa (σ105700=101 MPa)。在工程服役中,很多高温构件(例如石化工业的高温反应装置、电站锅炉和蒸汽轮机等)的使用寿命都按服役材料10万小时的持久强度设计,所以预测Sanicro25钢的10万小时寿命有重要的工程意义。

图5a给出了Sanicro25钢在不同温度下的断裂寿命与最小蠕变率的关系。可以看出,断裂寿命数据符合Monkman-Grant(M-G)方程

图5

图5   Sanicro25钢蠕变断裂寿命与最小蠕变速率的关系及其损伤特征

Fig.5   Relationship between fracture life and minimum creep rate and damage characteristics of Sanicro25 steel (a) Monkman-Grant relationship (b) Damage parameters characteristics


ε˙minαtr=cMG

其中αcMG是常数。损伤累积参数λ=εfε˙mintr定义为断裂应变除以最小蠕变速率与蠕变断裂寿命的乘积[19],可用于确定材料蠕变的损伤断裂模式。研究表明[13,19],不同损伤累计参数值(1~20)可表明工程材料损伤方式。λ由小变到大,表明材料由不带明显塑性变形的脆性断裂转化为显著塑性变形后的韧性断裂。Sanicro25钢的损伤累计参数集中在4~7(图5b),表明蠕变的断裂主要是结构不稳定和颈缩所致[13]

图6给出了Sanicro25钢的蠕变断裂塑性。由图6可见,随着加载应力的增大和温度的提高断后伸长率和断面收缩率的变化没有规律性。同时,从图6b可见,近断口区域的收缩率明显高于均匀变形段,进一步验证Sanicro25钢的蠕变断裂是明显的塑性变形后的颈缩断裂。图7给出了Sanicro25钢的横截面和断口形貌。由图7a可见,在近断口区域出现混合开裂(穿晶和少量沿晶)的特征。根据对断口表面的观察(图7b),材料是以准解理的方式沿着中心向周围扩展。扩展到晶界出现少量的沿晶界面,实现了穿晶界面扩展结合。综上所述,Sanicro25钢的蠕变断裂模式是以穿晶为主的混合断裂模式。

图6

图6   Sanicro25钢的蠕变断裂塑性

Fig.6   Creep fracture plasticity characteristics of Sanicro25 steel (a) Fracture strain (b) Section shrinkage of different region


图7

图7   Sanicro25钢蠕变的截面和断口形貌

Fig.7   Creep cross-sectional and fracture morphology of Sanicro25 steel (T=973 K; σ=240 MPa) (a) OM cross-sectional morphology (b) SEM fracture morphology


3 讨论

根据固溶体合金蠕变的应力指数和激活能,可推定材料的蠕变变形机制。但是,实际应用的奥氏体耐热钢中析出相的弥散强化使蠕变抗力提高。第二相弥散强化材料的最小蠕变速率与应力仍然满足幂律关系,但是应力指数显著提高,而且蠕变的表观激活能也明显高于材料的自扩散和互扩散激活能[20~22]

在温度为1023 K和应力为220 MPa的条件下,在蠕变后的基体中出现了细小的沉淀物,其尺度为20~50 nm(图8a)。图8b、c分别给出了细小沉淀物相的高分辨形貌和相应的傅里叶转化衍射斑点。这些细小沉淀物的类型和特征与在Sanicro25钢中观察到的Cu-rich相和Nb(C,N)碳化物相同[9~12, 23]。另外,位错线与细小析出相之间存在交互作用。其他学者对Sanicro25钢的研究结果表明,在蠕变后的基体内也析出细小的沉淀颗粒并与位错发生交互作用[10,12]

图8

图8   Sanicro 25钢在1023K和220MPa蠕变后的TEM结构特征

Fig.8   TEM microstructural characteristics of Sanicro 25 steel after creep at 1023 K and 220 MPa (a) Interaction of dislocations with fine precipitates. HRTEM micrograph and corresponding to SAED pattern; (b) Cu-rich phase (c) Nb (C, N)


实验得出的材料的表观应力指数(na=7.2~8.2)和表观激活能(Qa=496.7~531.8 kJ/mol)明显高于其本征应力指数和本征激活能,因此不能直接用于判断变形机制。其原因是,奥氏体耐热钢在高温蠕变过程中基体内弥散析出的沉淀相(Cu-rich相和Nb(C、N)相)阻碍位错的运动(图8a),导致蠕变门槛值的出现[21, 24]。研究表明[19,25~27],靠近颗粒的位错段在热激活协助下攀移越过颗粒,而其他位错段仍然在原滑移面上滑移。位错线长度的增加是位错攀移的阻力,这是出现应力门槛值的原因。在位错的运动过程中,当施加的应力所做的功大于位错线的额外长度引起的线能量的增加时,位错才能攀移过颗粒而使蠕变继续进行。

除了第二相弥散强化,Sanicro25钢还有固溶强化。溶质原子的溶入引起基体金属的晶格畸变,从而产生了内应力。蠕变时溶质原子偏聚在位错周围形成的溶质气团(例如柯氏气团),使溶质原子与位错的弹性交互作用能增大。位错运动时,溶质气团扩散随之运动,限制了位错的自由滑移使其滑移而出现牛顿粘滞性。另外,如果溶质与位错的弹性交互作用能较小,则在位错周围不能形成溶质气团。这时位错运动的阻力很小,滑移速度较高,而位错的攀移较慢。如果位错的粘滞性滑移速度高于位错攀移速度,则蠕变被位错攀移控制;反之则被位错的粘滞性滑移控制[28]

蠕变的控制机制为粘滞性滑移时:(1)应力指数n=3;(2)本征激活能等于固溶体的互扩散的激活能;(3)位错均匀分布,不形成亚结构。当蠕变的控制机制为位错攀移时:(1)应力指数n=5;(2)本征激活能等于基体金属的点阵自扩散激活能;(3)稳态时易形成稳定的亚结构[19,28~31]

依据不同的变形机制(应力指数n为3或者5),用线性外延法可计算出不同温度下材料蠕变的门槛值。图9给出了基于假定的蠕变机制计算出的不同温度下Sanicro25钢的门槛应力。图9a、b给出了假定不同应力指数蠕变门槛值的求解过程。同时,用所求的门槛值计算了相应的真实激活能和最佳线性拟合参数,结果列于表2。分析结果表明,n=3时线性拟合参数R2为0.986,计算出真实激活能为206.8 kJ/mol,明显高于间隙原子(C,N(132-136 kJ/mol)[32])的互扩散激活能,而明显低于置换原子(Cr,246 kJ/mol)、(Ni,282 kJ/mol)、(Mn,247 kJ/mol)、(Nb,268 kJ/mol)的互扩散激活能[19]。而当n=5时线性拟合参数R2更高达到0.995,求得的真实激活能为286.5±8.5kJ/mol,与奥氏体钢的点阵自扩散激活能(270±20kJ/mol)[10,33,34]基本相同。综合分析结果表明,温度为700、725和750℃时材料的蠕变门槛值应力分别为82.9±3.9,69.7±1.4,52.2±2.4 MPa,其应力随着温度的升高而减小。图10表明,材料在不同温度蠕变后具有不同的位错组态。随着温度的升高材料中的位错由波浪状的位错线转化为不规则网格位错,表明更高的温度有助于位错攀移越过颗粒。

图9

图9   基于假定的蠕变机制计算的不同温度下Sanicro25钢的门槛应力

Fig.9   Threshold stresses of Sanicro25 steel calculated based on assumed creep mechanism at different temperatures (a) Viscous glide mechanism: n=3; (b) Dislocation climbing control mechanism: n=5


表2   Sanicro25钢的蠕变门槛值应力分析

Table 2  Threshold stress analysis for creep of Sanicro25 steel

Assumed stress exponent, n

Temperature,

T/K

Threshold stress,

σth/MPa

Avg. correlation coeffcient

R2/pct

Avg. Activation energy,

Q/kJ·mol-1

3973138.5±1.90.986206.8±6.2
998122.4±1.3
102399.8±3.0
597382.9±3.90.995286.5±8.5
99869.7±1.4
102352.2±2.4

新窗口打开| 下载CSV


图10

图10   不同温度下基体内的位错-细小沉淀物相互作用的明视场TEM图像

Fig.10   Bright-field TEM image of dislocation-fine precipitates interactions within the matrix at different temperature (a) 973 K-220 MPa; (b) 1023 K-220 MPa


ε˙min=A2σ-σthGnexp(-QRT)

其中ε˙min为最小应变速率,A2为常数,σ为加载应力,σth为门槛值应力,T为绝对温度,G为剪切模量,n为真实应力指数,Q为真实激活能,R为气体常数。在归一化有效应力相同的条件下求出的材料的真实蠕变激活能为286.5±8.5 kJ/mol (图11b),约等于奥氏体钢的点阵自扩散激活能。分别用真实激活能和剪切模量修正最小应变速率和有效应力进行修正,则在不同温度下数据在一条斜率为5的直线上(图12)。这表明,在实验温度范围内,Sanicro25钢的蠕变变形机制为点阵自扩散协助下的位错攀移机制。

图11

图11   不同温度下Sanicro25钢的真实应力指数和激活能

Fig.11   True stress exponents and activation energy of Sanicro25 steel at different temperatures (a) Log-log plot of the minimum creep rate vs. effective stress (b) Semi-log plot of the ε˙m vs. the reciprocal temperature


图12

图12   不同温度下Sanicro25钢归一化的最小蠕变速率

Fig.12   minimum creep rate normalizated of Sanicro25 steel at various temperatures


4 结论

(1) Sanicro25钢的最小蠕变速率与加载应力符合幂率关系,其蠕变的表观应力指数为7.6~8.2,表观激活能为496.7~531.8 kJ/mol。

(2) 在Sanicro25钢的蠕变过程中,在晶内析出的纳米级Cu-rich相和Nb(C, N)相阻碍位错的运动,出现蠕变门槛值。随着温度的升高位错易于热激活攀移越过颗粒障碍使门槛值降低,相应的位错组态由波状的位错线转化为位错网格。

(3) 引入门槛值修正蠕变本构模型,可确定材料的真实应力指数(n=5)和真实激活能(Q=286.5±8.5 kJ/mol)。材料的蠕变变形机制是点阵自扩散协助下的位错攀移。

(4) Sanicro25钢的蠕变寿命符合Monkman-Grant关系,其断裂是以穿晶为主的混合模式。

参考文献

Saidur R, Abdelaziz E A, Demirbas A, et al.

A review on biomass as a fuel for boilers

[J]. Renew. Sust. Energ. Rev., 2011, 15(5): 2262

DOI      URL     [本文引用: 1]

Yu H Y, Chi C Y.

Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage

[J]. Chin. J. Mater. Res., 2015, 29(3): 195

[本文引用: 2]

于鸿垚, 迟成宇.

18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为

[J]. 材料研究学报, 2015, 29(3): 195

DOI      [本文引用: 2]

应用三维原子探针技术研究了600℃超超临界电站锅炉过热器/再热器用18Cr9Ni3CuNbN奥氏体耐热钢中强化相富Cu相的早期析出行为, 并绘制出富Cu相在18Cr-9Ni型奥氏体耐热钢中的C曲线。结果表明: 在高温时效过程中富Cu相无论在650℃还是在700℃均能较快地析出, 其形成过程都是在短时间内先形成富Cu偏聚区, 随着时效时间的延长Cu原子继续扩散到富Cu偏聚区, 其它原子如Fe, Cr, Ni等则被排出富Cu偏聚区而扩散到奥氏体基体中, 最终形成富Cu相。

Guo Y, Wang C X, Li T J, et al.

Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units

[J]. Chin. J. Mater. Res., 2016, 30(11): 841

DOI      [本文引用: 1]

The microstructure and precipitates of the creep-ruptured and aged alloy 617B at 750oC were characterized by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The polygonal (or strip-type) M23C6 particles with a complex face-centered cubic (fcc) structure locate along grain boundaries and inside grains, and granular γ ′ phase particles with an ordered fcc-structure inside grains were observed during creep and aging. The precipitates grown up with test time. The comparative observation of the aged and creep-ruptured alloy samples revealed that the applied stress did not affect the growth of γ ′ phase obviously, but affect the precipitation of carbides at grain boundaries greatly. The stress leads to the sharp growth and agglomation of M23C6 particles after a long time creep test.

郭 岩, 王彩侠, 李太江 .

700℃超超临界机组用617B镍基合金的组织结构和析出相

[J]. 材料研究学报, 2016, 30(11): 841

[本文引用: 1]

Polák J, Petráš R, Heczko M, et al.

Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

[J]. Mater. Sci. Eng. A. 2014, 615: 175

DOI      URL     [本文引用: 1]

Rutkowski B, Gil A.

A Czyrska-Filemonowicz Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion

[J]. Corros. Sci., 2016, 102: 373

DOI      URL    

Lim J, Hwang I S, Kim J H.

Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors

[J]. J. Nucl. Mater., 2013, 441(1): 650

DOI      URL    

Korzhavyi P A, Sandström R.

First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength

[J]. Mater. Sci. Eng. A. 2015, 626: 213

DOI      URL    

Chai G, Forsberg U. 12 - Sanicro 25: An Advanced High-strength, Heat-resistant Austenitic Stainless Steel [M]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017: 391-421

[本文引用: 3]

Li Y, Wang X.

Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants

[J]. Mater. Sci. Eng. A. 2020, 775:138991

DOI      URL     [本文引用: 3]

Zhang Y, Jing H, Xu L, et al.

High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy

[J]. Mater. Sci. Eng. A. 2017, 686: 102

DOI      URL     [本文引用: 5]

Zhang Y, Jing H, Xu L, et al.

Microstructure and texture study on an advanced heat-resistant alloy during creep

[J]. Mater. Charact., 2017, 130: 156

DOI      URL     [本文引用: 2]

Song K, Zhao L, Xu L, et al.

Dislocation creep modelling of Sanicro 25 based on microstructural evolution and particle hardening mechanism

[J]. Theor. Appl. Fract. Mec., 2021, 112: 102893

DOI      URL     [本文引用: 3]

Kloc L, Dymáček P, Sklenička V.

High temperature creep of Sanicro 25 austenitic steel at low stresses

[J]. Mater. Sci. Eng. A. 2018, 722: 88

DOI      URL     [本文引用: 3]

Zhao L, Song K, Zhang Y, et al.

Creep rupture assessment of new heat-resistant Sanicro 25 steel using different life prediction approaches

[J]. J. Mater. Eng. Perform., 2019, 28(12): 7464

DOI      [本文引用: 1]

The paper deals with creep life and creep strength estimations of Sanicro 25 steel through various continuum damage models and modified extrapolation methods. Four different continuum damage models, i.e., modified K-R model, Dyson model, W-T model and modified W-T model considering the stress-dependent failure strain, were incorporated into numerical simulations using user subroutines so as to analyze the creep strain behavior and the creep rupture time. In the case of 700 degrees C, the predicted creep rupture lifetimes determined from modified K-R model, Dyson model, W-T model and modified W-T model all matched with the experimental data, where the modified W-T model provided the best prediction. However, at 750 degrees C, only the predictions using W-T model and modified K-R model matched with the experimental data. The Dyson model and modified W-T model underestimated the creep rupture lifetime. Besides the creep damage approaches, a modified extrapolation method developed by Wilshire (based on the stress-dependent creep activation energy) was also tested and verified to make predictions of creep lifetime under various stress conditions more easily than the creep damage models. A general comparison of the analyses made with different life prediction methods in Sanicro 25 steel was presented in this paper.

Wang D Y, Wang L Y, Feng X, et al.

Creep properties of pre-deformed F316 stainless steel

[J]. Chin. J. Mater. Res., 2019, 33(7): 497

DOI     

Creep properties of the pre-deformed F316 stainless steel by 200 MPa at 650℃, 670℃ and 700℃ were investigated. Results show that by a constant tensile stress of 200 MPa, the time to rupture of the pre-deformed F316 stainless steel decreases, while the steady creep rate and the instantaneous creep strain increase with increasing creep temperature. Ductile fracture is the dominant rupture mode for the pre-deformed F316 stainless steel. Creep cavities are mainly located in the triple junctions of grain boundaries, and the average diameter and the area ratio of the voids decrease in the location with the increasing distance to the fracture surface. In the region with the same distance to the fracture surface, the average diameter and area percentage of the voids increase obviously with the increasing creep temperature. The present pre-deformed F316 stainless steel with high density of twins has a better creep resistance than that of non-pre-deformed ones. Time to rupture by 200 MPa at 350℃ was estimated by using the Larson-Miller and θ-projection methods, respectively. The results show that the θ-projection method can give a better correlation. Besides, the long-term creep reliability of the F316 stainless steel served by 200 MP at 350℃ was discussed based on the Larson-Miller and θ-projection methods.

王冬颖, 王立毅, 冯 鑫 .

一级应变硬化F316奥氏体不锈钢的高温蠕变性能

[J]. 材料研究学报, 2019, 33(7): 497

DOI     

研究了在200 MPa应力下一级应变硬化F316奥氏体不锈钢在650℃、680℃和700℃的蠕变性能和蠕变断裂行为。结果表明: 在200 MPa 恒定应力下蠕变温度越高其蠕变寿命越短,稳态蠕变速率越大,由应力加载引起的瞬时应变越大。蠕变断裂方式主要为韧性断裂。蠕变孔洞主要分布在三叉晶界等脆弱部位,距离断口越远试样中孔洞的平均尺寸和孔洞面积百分比越小。在与断口距离相同的位置上,随着蠕变温度的提高蠕变孔洞的平均尺寸和面积百分比均明显增大。与未预应变的F316不锈钢相比,具有高密度孪晶的一级应变硬化F316不锈钢具有更大的蠕变抗力。分别基于Larson-Miller 参数法和θ参数法外推计算了350℃/200 MPa下的蠕变寿命,θ参数法的拟合曲线与实际蠕变曲线吻合得较好。根据Larson-Miller参数法和θ参数法,探讨了350℃/200 MPa下一级应变硬化F316奥氏体不锈钢长期服役蠕变可靠性。

Li H F, Zhao J, Cheng C Q, et al.

Prediction of high temperature creep deformation and rupture life on HP heat reisistanct alloy using Zc parameter

[J]. J. Mater. Eng., 2018, 46(3): 112

[本文引用: 1]

李会芳, 赵 杰, 程从前 .

基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法

[J]. 材料工程, 2018, 46(3): 112

DOI      [本文引用: 1]

通过研究HP耐热合金的高温蠕变实验数据,提出一种基于Z<sub>c</sub>参数的高温蠕变变形预测方法,并且利用该方法对HP耐热合金的高温蠕变性能进行预测和分析。结果表明:在1000,980℃和930℃下,蠕变应变分别为0.5%和1%时,预测数据与HP耐热合金的蠕变实验数据符合较好。同时利用基于Z<sub>c</sub>参数的高温蠕变变形预测方法对HP耐热合金的高温持久寿命进行了评估,结果表明由该方法得到的预测主曲线与耐热合金的持久实验数据吻合较好。

He J, Sandström R, Vujic S.

Creep, low cycle fatigue and creep-fatigue properties of a modified HR3C

[J]. Proce. Struct. Integrity. 2016, 2: 871

[本文引用: 1]

Kassner M E.

Chapter 1-Fundamentals of Creep in Materials

[M]. Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015: 1-6

[本文引用: 1]

Alomari A S, Kumar N, Murty K L.

Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (Alloy 709) at elevated temperatures

[J]. Metall. Mater. Trans. A. 2019, 50(2): 641

[本文引用: 6]

Park D B, Hong S M, Lee K H, et al.

High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel

[J]. Mater. Charact., 2014, 93: 52

DOI      URL     [本文引用: 2]

Ou P, Li L, Xie X F, et al.

Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures

[J]. Acta. Metall. Sin-Engl. 2015, 28(11): 1336

DOI      [本文引用: 1]

Creep behavior of Super304H austenitic steel has been investigated at elevated temperatures of 923-973 K and at applied stress of 190-210 MPa. The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures, respectively. These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation. The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion. The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates. The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.

Meng L J, Sun J, Xing H.

Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

[J]. J. Nucl. Mater., 2012, 427(1): 116

DOI      URL     [本文引用: 1]

Guo Q Y, Li Y M, Chen B, et al.

Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel

[J]. Acta Metall. Sin., 2021, 57(01): 82

[本文引用: 1]

郭倩颖, 李彦默, 陈 斌 .

高温时效处理对S31042耐热钢组织和蠕变性能的影响

[J]. 金属学报, 2021, 57(01): 82

[本文引用: 1]

Latha S, Mathew M D, Parameswaran P, et al.

Creep behaviour of 14Cr-15Ni-Ti stainless steel at 923K

[J]. Mater. Sci. Eng. A, 2010, 527(20): 5167

DOI      URL     [本文引用: 1]

Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T.

Dislocation-particle interactions in magnesium alloys

[J]. Acta Mater., 2020, 194: 190

DOI      URL     [本文引用: 1]

Arzt E, Ashby M F.

Threshold stresses in materials containing dispersed particles

[J]. Scrip. Mater., 1982, 16(11): 1285

Ding Z, Zhang J, Wang C S, et al.

Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture

[J]. Acta Metall. Sin., 2011, 47(01): 47

[本文引用: 1]

丁 智, 张 军, 王常帅 .

DZ125镍基高温合金高温持久断裂后的位错组态

[J]. 金属学报. 2011, 47(01): 47

[本文引用: 1]

Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Woodhead Publishing, 2010: 52-53

[本文引用: 2]

Murty K L, Mohamed F A, Dorn J E.

Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg

[J]. Acta. Mater., 1972, 20(8): 1009

DOI      URL    

Murty K L, Dentel G, Britt J.

Effect of temperature on transitions in creep mechanisms in class-A alloys

[J]. Mater. Sci. Eng. A, 2005, 410-411: 28

DOI      URL    

Yuan C, Guo J T, Yang H C.

Resistant stress for creep in cast nickel-base superalloys

[J]. Acta Metall. Sin., 2002, 11: 1149

[本文引用: 1]

袁 超, 郭建亭, 杨洪才.

铸造镍基高温合金的蠕变阻力

[J]. 金属学报, 2002, 11: 1149

[本文引用: 1]

Alomari A S, Kumar N, Murty K L.

Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%)

[J]. Mater. Sci. Eng. A, 2019, 751: 292

DOI      URL     [本文引用: 1]

Maruyama K, 8-Fundamental Aspects of Creep Deformation and Deformation Mechanism Map [M]. Creep-Resistant Steels, Woodhead Publishing 2008: 265-278

[本文引用: 1]

Ovid'ko I A. 14-Enhanced Ductility and Its Mechanisms in Nanocrystalline Metallic Materials [M]. Nanostructured Metals and Alloys, Woodhead Publishing 2011: 430-458

[本文引用: 1]

Li Y, Mohamed F A.

An investigation of creep behavior in an SiC 2124 Al composite

[J]. Acta Mater., 1997, 45(11): 4775

DOI      URL    

Vo N Q, Bayansan D, Sanaty-Zadeh A, et al.

Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy

[J]. Materialia, 2018, 4: 65

DOI      URL    

/