材料研究学报, 2023, 37(7): 543-553 DOI: 10.11901/1005.3093.2022.350

研究论文

Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能

王伟,1, 解泽磊1, 屈怡珅2, 常文娟1, 彭怡晴1, 金杰3, 王快社1

1.西安建筑科技大学冶金工程学院 陕西 710055

2.北京交通大学经济管理学院 北京 100044

3.北京交通大学机械与电子控制工程学院 北京 100044

Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives

WANG Wei,1, XIE Zelei1, QU Yishen2, CHANG Wenjuan1, PENG Yiqing1, JIN Jie3, WANG Kuaishe1

1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

2.School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

通讯作者: 王伟,副教授,gackmol@163.com,研究方向为固体润滑涂层的制备及摩擦学性能研究

责任编辑: 黄青

收稿日期: 2022-06-28   修回日期: 2022-11-29  

基金资助: 国家自然科学基金(51975450)

Corresponding authors: WANG Wei, Tel: 13609264618, E-mail:gackmol@163.com

Received: 2022-06-28   Revised: 2022-11-29  

Fund supported: National Natural Science Foundation of China(51975450)

作者简介 About authors

王伟,男,1985年生,博士

摘要

以石墨烯和正硅酸乙酯为原料用溶胶-凝胶法制备了Graphene/SiO2纳米复合材料,用球盘式摩擦磨损试验机评价其作为水基润滑添加剂在不同载荷和浓度下的摩擦学性能。用扫描电镜(SEM)、X射线光电子能谱(XPS)等手段表征了摩擦副的表面形貌和元素特征。结果表明:在15N载荷工况下,Graphene/SiO2纳米复合材料作为添加剂在超纯水中含量为0.2%(质量分数)时具有最佳的摩擦学性能 ,比超纯水的摩擦系数降低了17.9%,钢球磨损率降低了61.7%。基于磨损表面分析提出的润滑机制为:在摩擦过程中,Graphene/SiO2纳米复合材料在磨损表面生成的物理吸附膜、Graphene的层状剪切作用以及SiO2在磨损表面的修复作用和滚珠轴承作用,使超纯水的摩擦学性能提高。

关键词: 复合材料; 石墨烯/二氧化硅复合材料; 摩擦性能; 润滑机制; 水基润滑剂

Abstract

Graphene/SiO2 nanocomposites were prepared by sol-gel method using graphene and Tetraethyl orthosilicate as raw materials. The tribological properties of graphene/SiO2 nanocomposites as water-based lubrication additives were evaluated by ball-disk friction and wear testing machine under different loads and in the presence of ultra-pure waters with different additive concentrations. The surface morphology and elemental characteristics of the friction pair were analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that under the loading condition of 15N, in ultra-pure water with 0.2% (mass fraction) Graphene/SiO2 nanocomposites as additives the ball-disk pair exhibits the best tribological properties, with the coefficient of friction and the wear rate of the steel ball 17.9% and 61.7% lower, respectively than those in the blank ultra-pure water. Based on the wear surface analysis, the lubrication mechanism is as follows: during the friction process, the physical adsorption film formed by graphene/SiO2 nanocomposites on the wear surface, the layered shear action of graphene, the repair action of SiO2 on the wear surface, and the action of ball bearings. All together effectively improve the tribological properties of ultra-pure water.

Keywords: composite; graphene/SiO2 composite; tribological properties; lubrication mechanism; water-based lubricant

PDF (19775KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553 DOI:10.11901/1005.3093.2022.350

WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. Chinese Journal of Materials Research, 2023, 37(7): 543-553 DOI:10.11901/1005.3093.2022.350

钛合金轻质、耐高温、耐腐蚀、生物相容性好且无磁性,在航空、航天、兵器、舰船、医疗等领域得到了广泛的应用[1,2]。但是,钛合金的导热系数低、高温化学活性高和弹性模量小,在切削加工过程中工件与刀具的粘连使其磨损严重、加工后的工件表面质量较差、加工成本提高,限制了钛合金的应用[3~5]。提高钛合金切削性能的关键,在于改善切削界面摩擦状态,实现高效润滑。但是,钛合金独特的摩擦学特性使传统金属加工润滑液难以在钛合金表面有效润滑。在基础液中添加纳米材料,是提高润滑介质加工性的主要手段[6~8]。石墨烯(Graphene)是一种典型的二维材料,层与层之间依靠弱范德华力连接,具有较弱的剪切力、优异的机械性能、大比表面积和较高的热导率,在润滑领域受到了极大的关注[9,10]。Ming等[11]在植物油中添加石墨烯用于TC4合金切削加工润滑,可增强铣削区域油膜的润滑性能。Ning等[12]将Graphene、磷酸盐、纳米ZrO2等按一定比例混合制备石墨烯水基润滑剂应用于钛合金热轧,降低了热轧过程的摩擦磨损和氧化。Ibrahim等[13]将石墨烯加入棕榈油中,摩擦系数和切削能耗比Acculube LB2000商用润滑油大幅降低。但是,结构完整的Graphene因化学稳定性高而难以在溶剂中稳定分散,容易产生不可逆团聚使摩擦过程中难以进入工况表面,无法发挥抗磨减磨的作用[14,15]

纳米复合材料在基础液中的分散性高,且不同纳米材料之间的协同作用可进一步提高润滑性能。Meng[16,17]等在氧化石墨烯(GO)表面沉积Au或Cu,降低了石墨烯片层间的π-π键的相互作用减少了团聚。与单一纳米材料(GO、Au和Cu)相比,复合材料之间的协同作用使其具有更优异的润滑性能。Li等[18]用激光辐射制备的Ag/Graphene复合材料可稳定在油中悬浮60 d以上,这种润滑添加剂不会产生金属腐蚀和环境污染。Graphene与金属纳米材料复合的成本高,回收难,因此难以推广。SiO2中的Si-O亲水性和耐磨性较好,且成本较低[19,20]。Na等[21]用原位引发聚合法制备的PTFE/SiO2复合材料,提高了PTFE在纯水中的分散性和摩擦性能。Zhang等[22]用溶胶-凝胶法制备Fe3O4@SiO2纳米复合材料,提高了Fe3O4在环氧树脂中的分散性。在Graphene表面原位生成SiO2制备Graphene/SiO2纳米复合材料,可提高Graphene在超纯水中的分散性且降低成本。鉴于此,本文用溶胶凝胶法在Graphene表面原位生成SiO2制备Graphene/SiO2纳米复合材料,以提高Graphene在超纯水中的分散性且降低成本,并将其作为水基润滑添加剂研究GCr15/TC4接触下的摩擦学性能并揭示其润滑机理。

1 实验方法

1.1 实验用材料

无水乙醇(C2H5OH,分析纯),氨水(NH3·H2O,分析纯),石油醚(PE)和正硅酸乙酯(TEOS),Graphene和工业SiO2

1.2 纳米复合材料Graphene/SiO2 的制备

使用溶胶-凝胶法中的Stöber法制备Graphene/SiO2[23],其工艺示意图如图1所示。将0.2 g的Graphene添加到50 mL无水乙醇和50 mL超纯水的混合溶液中,使用超声波破碎30 min。然后加入1 mL氨水和2 mL TEOS并对混合溶液磁力搅拌12 h。对产物进行离心分离后收集胶状固体产物,用无水乙醇多次清洗以除去氨水和未反应的TEOS。将所得胶状固体在75℃真空环境干燥12 h后达到纳米复合材料Graphene/SiO2

图1

图1   制备Graphene/SiO2纳米复合材料的示意图

Fig.1   Schematic diagram of preparation of Graphene/SiO2 composite nanomaterials


1.3 摩擦磨损实验

使用旋转式摩擦磨损试验仪(UMT-5)测试试样的摩擦磨损性能,上试样是直径为6 mm的GCr15钢球,下试样是厚度为8 mm直径为25 mm的TC4圆盘。摩擦实验中的润滑剂,是超纯水中添加不同质量分数的Graphene/SiO2。实验的线速度为0.047 m/s,载荷为8~15 N,时间为30 min,根据赫兹理论计算赫兹接触压力

P=4Fπa2
a=2(23×FRE')3
1E'=12(1-μ12E1+1-μ22E2)

其中P为赫兹接触应力,a为接触直径、F为摩擦试验机施加载荷(8~15 N)、R为GCr15球半径、E'为有效弹性模量[24,25]E1(TC4 113 GPa)和E2(GCr15 207 GPa)为摩擦试样的弹性模量,μ1(0.34)和μ2(0.30)为泊松比。最大接触应力范围为1.04~1.29 GPa。GCr15球的磨损率为[26,27]

h=r-r2-d24
V=πl63d24+h2
WB=VPS

式中d为等效圆的直径,r为GCr15球的直径,P为载荷,S为总滑动距离。实验前用无水乙醇超声清洗GCr15球和TC4圆盘30 min以去除污染,摩擦实验开始前滴加80 μL的润滑剂。实验结束后用棉球擦拭表面,干燥后保存。

1.4 性能表征

用沉降法评估Graphene/SiO2在超纯水中的分散稳定性[35]。将0.2%(质量分数)的Graphene和Graphene/SiO2分别加到超纯水中,超声1 h静置适当时间后拍摄光学图像。

用X射线衍射仪(XRD,D/MAX-RB)测试Graphene/SiO2纳米材料的晶体结构。用扫描电子显微镜(SEM,JSM-5610LV)观察Graphene/SiO2复合材料的微观组织形貌,用SEM附带的EDS分析复合材料和磨损表面元素的成分。用拉曼光谱仪(LabRam HR Evolution)测试Graphene和Graphene/SiO2纳米复合材料的拉曼光谱。用金相显微镜(OM,GX51) 测量钢球磨斑的直径,用三维白光扫描仪(TDWS,MicroXAM-800)测量TC4圆盘磨损体积。用扫描电镜分析实验后TC4圆盘磨痕的微观组织形貌和元素的分布。用X射线光电子能谱仪(XPS,PHI 5000) 分析磨损表面的特征元素。

2 结果和讨论

2.1 Graphene/SiO2 纳米复合材料的形貌与表征

图2给出了Graphene和SiO2的扫描电镜照片,可见片层之间褶皱,边缘处卷曲,SiO2球状颗粒的直径约为300 nm。图2c给出了Graphene/SiO2纳米复合材料的扫面电镜照片,可见Graphene的卷曲结构,表面均为小球颗粒,能谱分析表明主要元素为Si、O和C,即Graphene表面生成了SiO2纳米颗粒。与单一的纳米SiO2相比,Graphene表面的SiO2颗粒尺寸差异较大(图2bc)。其原因是,在TEOS发生化学反应形成SiO2的过程中Graphene和部分SiO2颗粒都是形核位点,生成了较大的SiO2颗粒[28]

图2

图2   不同试样的SEM照片、Graphene/SiO2的能谱、以及Graphene/SiO2、Graphene、Amorphous SiO2和SiO2的XRD谱

Fig.2   SEM images of different samples (a) graphene, (b) SiO2, (c) graphene/SiO2; (d) energy spectrum of Graphene/SiO2;(e) XRD patterns of Graphene/SiO2, Graphene, Amorphous SiO2 and SiO2


图2e给出了XRD谱。可以看出,Graphene在谱中的26.34°和42.68°出现了两个特征衍射峰[29],低矮的衍射峰对应非晶态SiO2,明显的衍射峰对应晶体SiO2[30]。Graphene/SiO2纳米复合材料的衍射峰与非晶SiO2一致,没有出现Graphene的衍射峰特征。

图3给出了Graphene和Graphene/SiO2的拉曼光谱,可见Graphene的衍射峰位于1333.2 cm-1、1567.1 cm-1和2671.8 cm-1处,分别对应D峰、G峰和2D峰。G峰的强度高于2D峰,表明材料具有多层结构[31,32]。与Graphene的特征峰相比Graphene/SiO2的特征峰正向偏移,表明Graphene表面原位生成了SiO2[33,34]。以上结果表明,已制备出Graphene/SiO2纳米复合材料。

图3

图3   Graphene/SiO2和Graphene的Raman谱

Fig.3   Raman spectra of Graphene/SiO2 and Graphene


2.2 Graphene/SiO2 的分散性

图4给出了不同润滑剂放置不同时间的光学图像。Graphene在超纯水中分散性差,放置24 h就完全分层。而含有Graphene/SiO2的超纯水溶液的分散较为稳定,静止48 h后开始出现沉淀,上层溶液变浅,表明其分散性优于Graphene。

图4

图4   不同润滑剂在不同时间的光学图像

Fig.4   Optical images of different lubricants at different time:(a) 0.2% Graphene; (b) 0.2% Graphene/SiO2


2.3 Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能

图5给出了不同含量的Graphene/SiO2的平均摩擦系数和磨损率曲线。可以看出,平均摩擦系数和磨损率均呈现先下降后上升,0.2%(质量分数)的Graphene/SiO2摩擦系数最低,比超纯水工况降低17.9%,钢球磨损率降低61.7%。添加剂含量超过0.2%(质量分数),则摩擦性能开始降低。

图5

图5   不同含量的Graphene/SiO2的平均摩擦系数和磨损率曲线

Fig.5   Curves of average coefficient of friction and wear rate of Graphene/SiO2 with different contents


图6给出了在不同载荷下0.2%(质量分数)Graphene/SiO2润滑剂的摩擦系数。从图6可见,在相同的载荷下超纯水的摩擦系数曲线均在润滑添加剂上方。在8 N载荷工况下超纯水的摩擦系数先上升到0.36然后降到0.28,最终在0.29~0.32之间波动,而Graphene/SiO2的摩擦系数明显降低。在12 N载荷工况下,超纯水和Graphene/SiO2的摩擦系数接近,而Graphene/SiO2的摩擦曲线有升高的趋势。在15 N载荷工况下5 min后超纯水的摩擦系数保持在0.29,而Graphene/SiO2的摩擦系数保持在0.24。在总体上,在载荷相同的工况下Graphene/SiO2的摩擦系数曲线始终在超纯水之下。

图6

图6   超纯水和Graphene/SiO2在不同载荷条件下的摩擦系数

Fig.6   Coefficient of friction curve of water and Graphene/SiO2 under different loads (a) 8 N, (b) 10 N, (c) 12 N, (d) 15 N


图7给出了超纯水和含量为0.2%(质量分数)的Graphene/SiO2在不同载荷下的平均摩擦系数和磨损率。可以看出,载荷由8 N增大到12 N时Graphene/SiO2的摩擦系数和磨损率均增大,而超纯水的摩擦系数降低、磨损率提高。载荷为10 N时Graphene/SiO2的平均摩擦系数比超纯水的平均摩擦系数降低了5.9%而磨损率降低了34.4%。载荷从12 N增大到15 N,Graphene/SiO2和超纯水的平均摩擦系数和磨损率都降低。在载荷相同条件下,Graphene/SiO2的平均摩擦系数和磨损率均低于超纯水。在15 N载荷工况下Graphene/SiO2的摩擦系数和磨损率最低,摩擦系数为0.2399,磨损率为3.75×10-8 mm3/N·m。与超纯水相比,摩擦系数降低17.9%,磨损率降低了61.7%。

图7

图7   超纯水和Graphene/SiO2不同载荷条件下的摩擦系数和磨损率

Fig.7   Coefficient of Friction(a) and wear rates of water and Graphene/SiO2 (b) under various load conditions


图8给出了三维白光测量数据。计算结果表明,超纯水和0.2%(质量分数)润滑添加剂的磨痕磨损体积分别为0.017 mm3和0.019 mm3,但0.2%(质量分数)润滑添加剂的摩擦系数和钢球磨损率的实验结果均低于超纯水。其原因是,较高载荷产生更多的磨屑,使TC4盘磨损体积增大。同时,磨屑和SiO2颗粒对磨损表面共同修复提高了耐磨性,使摩擦系数降低[36]

图8

图8   TC4圆盘的三维白光和磨痕剖面

Fig.8   3D Micrographs and profiles of wear tracks of TC4 discs (a) Ultra-pure water (b) Graphene/SiO2


2.4 磨损表面

图9给出了超纯水和Graphene/SiO2润滑下磨痕表面的OM图。可以看出,GCr15钢球磨痕均为椭圆状,在载荷作用下接触区域不是理想状态的刚体,因此使局部变形成椭圆状的接触区(图10)[37,38]。用超纯水润滑(图9a~d)则钢球表面沿滑动方向有深而宽的磨痕,划痕和凹坑较多,磨损量大。在超纯水中加入Graphene/SiO2润滑剂(图9e~h)使磨痕变浅变窄,磨斑明显变小。

图9

图9   不同载荷下GCr15的磨痕OM图

Fig.9   OM images of GCr15 wear scars at different loads (a~d) Ultra-pure water (e~h) 0.2% Graphene/SiO2


图10

图10   Hertz球盘接触模型

Fig.10   Hertz contact model of sphere-on-disc


图11a~d给出了经超纯水润滑的TC4圆盘磨痕的SEM照片和EDS谱。可以看出,超纯水润滑的磨损表面有明显的脱屑且出现细小颗粒磨损。表面上的元素主要是TC4的主要元素而未发现氧元素,表明未发生氧化。在15 N载荷工况下表面出现片层状脱落、磨屑和犁沟,表明磨损机制为磨粒磨损和黏着磨损。图11e~h给出了经Graphene/SiO2润滑后的表面。可以看出,在8 N和10 N载荷下磨损表面上的残留物质较多。图12给出了对残留物质的能谱分析,可见磨损表面的物质主要为TC4和Graphene/SiO2。Fe元素来自于GCr15小球,表明发生了材料转移。在15 N载荷工况下磨损表面出现坑洞和裂缝,还出现颗粒和脱屑,表明磨损形式主要为疲劳磨损、磨粒磨损和黏着磨损。图11g~h给出了12 N和15 N载荷工况表面的EDS分析结果。可以看出,磨损表面出现Si元素,C元素的含量较低。这表明,在高载荷下润滑剂难以进入摩擦表面。图13给出了在15 N载荷工况下的面扫描结果。可以看出,表面出现均匀的Si元素,高分辨SEM图像证明磨损表面有SiO2颗粒。

图11

图11   不同载荷下TC4盘的磨痕SEM照片

Fig.11   SEM images of wear scars of TC4 discs under different loads: (a~d) Ultra-pure water, (e~h) 0.2% Graphene/SiO2 lubricant


图12

图12   10 N载荷下0.2%Graphene/SiO2润滑添加剂的TC4盘磨痕能谱

Fig.12   EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 10 N load (a) high resolution SEM image (b) area I EDS (c) area II EDS


图13

图13   15N载荷下0.2% Graphene/SiO2润滑添加剂的 TC4盘磨痕能谱

Fig.13   EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 15 N load (a) The high resolution SEM image, (b) the spectra, (c~e) the distribution of Ti, C, Si elements


图14给出了对磨损表面特征元素的XPS分析,以揭示Graphene/SiO2添加剂的润滑机理。由图14a中的C1s谱峰对应磨损表面的C-C、C-O、C=O键可见,磨损表面存在Graphene,而SiC是切割圆盘制取XPS试样时引入的。Si2p的谱峰(图14c)也证实了SiC的存在[39]。从图14b中的O1s谱峰可知,Ti和Al金属在空气中易生成一层致密的氧化薄膜,磨损表面出现TiO2和Al2O3[40,41]。而SiO2的存在,证明磨损表面Graphene/SiO2润滑添加剂的存在。磨损表面并未发生复杂的化学反应,而在15 N载荷条件下Si元素在磨损表面均匀分布,表明在摩擦过程中Graphene/SiO2水基润滑剂在摩擦界面生成了一定厚度的物理吸附膜。

图14

图14   Graphene/SiO2润滑的TC4圆盘磨损表面的XPS分析

Fig.14   XPS analysis of worn surface of TC4 disc lubricated by Graphene/SiO2: (a) C1s (b) O1s (c) Si2p (d) Al2p (e) Ti2p


根据润滑理论,润滑的状态可用润滑状态图中的两个分量

gV=GW3u2
gE=W8/3u2

表示。其中u=ηV/E'RG=αE'W=F/E'R2R为GCr15球的半径(3 mm),V为摩擦过程中的摩擦副的相对线速度(47.1 mm/s),η为润滑剂的粘度,α为粘度-压力系数,E'(163 GPa)为有效弹性模量,F(8~15 N)施加的载荷,k(≈1.03)为椭圆参数。根据hamrock-dowson理论,薄膜的最小理论厚度和比率分别为[42]

hmin=2.69G0.53U0.67W0.067(1-0.61e-0.73k)

λ=hminσ12+σ22

其中σ1σ2分别为球和盘的粗糙度(σ1=20 nm,σ2=40 nm)。计算结果表明,hmin约为8.08 nm,λ约为0.18,表明润滑状态处于边界润滑[43]

根据计算出的边界润滑状态提出相应的磨损机理(图15):添加在超纯水中的Graphene/SiO2吸附或沉积在摩擦表面生成润滑膜,将摩擦副和磨损表面凹凸点接触转变为摩擦副-润滑膜-磨损面的接触,减少了磨损[44~46]。由图11h图13可见,在摩擦实验过程中从Graphene表面脱落的SiO2修补了磨损表面,部分SiO2在接触面产生微轴承作用,将滑动摩擦转变为滚动摩擦[47]。在高载荷情况下摩擦副表面上的凸峰折断产生了更多的细小磨屑,磨屑与部分润滑添加剂相结合修复了磨损表面[48]。因此,与其他载荷相比15 N载荷情况下的摩擦系数更低。另一方面,Graphene片层间依靠范德华力结合,在滑动过程中摩擦副之间的低剪切力使片层产生相对滑动,Graphene给接触区域补充水而避免了直接接触[49]。这表明,Graphene/SiO2润滑添加剂的加入提高了超纯水的摩擦学性能。

图15

图15   Graphene/SiO2的润滑机理示意图

Fig.15   Schematic diagram of lubrication mechanism of Graphene/SiO2


3 结论

(1) 使用溶胶-凝胶Stöber法制备的Graphene/SiO2复合材料,Graphene为软质内核,SiO2在其表面形成一层硬质外壳,外壳粒子的直径约为100 nm并能在水中稳定分散。

(2) 在15 N载荷工况下,0.2% Graphene/SiO2水基润滑剂摩擦系数比超纯水降低17.9%,钢球磨损率降低了61.7%。

(3) 在高载荷作用下Graphene/SiO2润滑剂的润滑效果更好,主要原因是Graphene/SiO2纳米复合材料在磨损表面生成了物理吸附膜、Graphene的层状剪切作用以及SiO2对磨损表面的修复和滚珠轴承作用。

参考文献

Li C H, Zhu M, Wang N, et al.

Application of titanium alloy in airplane

[J]. Chinese Journal of Rare Metals, 2009, 33(1): 84

[本文引用: 1]

李重河, 朱 明, 王 宁 .

钛合金在飞机上的应用

[J]. 稀有金属, 2009, 33(01): 84

[本文引用: 1]

Niinomi M.

Recent progress in research and development of metallic structural biomaterials with mainly focusing on mechanical biocompatibility

[J]. Materials Transactions, 2018, 59(1): 1

DOI      URL     [本文引用: 1]

Liu Q M, Xu J K, Yu H D.

Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V

[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2917

DOI      [本文引用: 1]

Zhang H, Qi X.

Super low friction characteristics initiated by running-in process inwater-based lubricant for Ti-alloy

[J]. Chinese Journal of Materials Research, 2021, 35(5): 349

张会臣, 漆雪莲.

跑合过程引发钛合金水基润滑的超低摩擦特性

[J]. 材料研究学报, 2021, 35(05): 349

Cheng J, Li F, Qiao Z H, et al.

The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics

[J]. Materials & Design, 2015, 84: 245

[本文引用: 1]

Sun J, Meng Y.

Lubrication and repair of metal surface by nano-fluid

[J]. Surface Technology, 2019, 48(11): 1

[本文引用: 1]

孙建林, 孟亚男.

纳米加工液对金属表面的润滑与修复

[J]. 表面技术, 2019, 48(11): 1

[本文引用: 1]

Xu Y F, Sun K Q, Yu J Y, et al.

Tribological properties of TiO2/BP nanocomposites as lubricant additives for titanium alloy tribopairs

[J]. Tribology Transactions, 2022, 65(2): 270

DOI      URL    

Hegab H, Kishawy H A, Gadallah M H, et al.

On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication

[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1593

DOI      [本文引用: 1]

Hou S X, Li Z G, Ren C X, et al.

Research progress of graphene as additives in lubrication

[J]. Applied Chemical Industry, 2021, 50(6): 1683

[本文引用: 1]

侯锁霞, 李兆刚, 任呈祥 .

石墨烯添加剂润滑性能的研究进展

[J]. 应用化工, 2021, 50(06): 1683

[本文引用: 1]

Ye X Y, Ma L M, Yang Z G, et al.

Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive

[J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7483

[本文引用: 1]

Li M, Yu T B, Zhang R C, et al.

MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid

[J]. Int. J. Adv. Manuf. Technol., 2018, 99(5-8): 1735

DOI      [本文引用: 1]

Kong N, Zhang J, Zhang J, et al.

Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant

[J]. Nanomaterials, 2020, 10(4): 665

DOI      URL     [本文引用: 1]

Hot rolling of titanium alloy currently is carried out without lubrication because of the surface defects. In order to explore an effective lubrication scheme to reduce friction and wear during hot rolling of titanium alloy, a mixed graphene-incorporating lubricant has been proposed to study its lubrication performance and mechanism. The tribological experiments were carried out by ball-disk friction and wear tester under hot-rolling parameters. Scanning electron microscopy (SEM), X-ray energy spectrum analyzer (EDS), X-ray powder diffractometer (XRD) and Raman analysis were used to analyse the surface and cross-section of the wear marks on the samples after the tribological experiments. The results show that the friction coefficient decreases up to about 35% compared with tests under dry and lubricated conditions. The surface quality of the wear marks is improved significantly after applying the proposed lubricant. The graphene which is embedded in the phosphate film can be effectively applied as a lubricating material to strengthen the lubricating film with less combustion loss at high temperatures. A chemical- and mechanical-induced lubrication mechanism for the hot rolling of titanium sheets has been proposed due to the synergistic lubrication effect of the graphene, ZrO2 nano particles and phosphate. It is of great significance and potential value to apply this proposed lubricant as an effective way to reduce the wear, friction and oxidation during the hot-rolling process of titanium alloy.

Ibrahim A M M, Li W, Xiao H, et al.

Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication

[J]. Tribology International, 2020, 150: 106387

DOI      URL     [本文引用: 1]

Fu T, Ma S H, Zhou F, et al.

Progress of functionalized graphene nanomaterials and their applications as water-based lubricating additives

[J]. Tribology, 2022, 42(2): 408

[本文引用: 1]

付 甜, 麻拴红, 周 峰 .

石墨烯的功能化改性及其作为水基润滑添加剂的应用进展

[J]. 摩擦学学报, 2022, 42(02): 408

[本文引用: 1]

Wang Y, Hu Y, Zhao H, et al.

Research progress of graphene as additives of water-based lubricants

[J]. Materials Review, 2021, 35(10A): 19055

[本文引用: 1]

Meng Y, Su F, Chen Y.

Au/Graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive

[J]. ACS. Appl. Mater. Interfaces., 2017, 9(45): 39549

DOI      URL     [本文引用: 1]

Meng Y, Su F, Chen Y J C E J.

Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear

[J]. Chemical Engineering Journal, 2015, 281: 11

DOI      URL     [本文引用: 1]

Wang L, Gong P, Li W, et al.

Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear

[J]. Tribology International, 2020, 146: 106228

DOI      URL     [本文引用: 1]

Xie H M, Jiang B, He J J, et al.

Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet

[J]. Materials Research Innovations, 2015, 19(suppl.4) : S127

[本文引用: 1]

Li X, Chen Y, Mo S P, et al.

Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid

[J]. Thermochimica Acta, 2014, 595: 6

DOI      URL     [本文引用: 1]

Wang N, Wang H, Ren J, et al.

Novel additive of PTFE@SiO2 Core-Shell nanoparticles with superior water lubricating properties

[J]. Materials & Design, 2020: 109069

[本文引用: 1]

Zhang C L, He Y, Xu Z H, et al.

Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings

[J]. Polymers for Advanced Technologies, 2016, 27(6): 740

DOI      URL     [本文引用: 1]

Stöber W, Fink A, Bohn E.

Controlled growth of monodisperse silica spheres in the micron size range

[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62

DOI      URL     [本文引用: 1]

Xiao H P, Guo D, Liu S H, et al.

Contact ratio of rough surfaces with multiple asperities in mixed lubrication at high pressures

[J]. Appl. Surf. Sci., 2012, 258(8): 3888

DOI      URL     [本文引用: 1]

Wu C H, Zhang L C, Qu P L, et al.

Characterization of interface stresses and lubrication of rough elastic surfaces under ball-on-disc rolling

[J]. Proc. Inst. Mech. Eng. Part. J-J. Eng. Tribol., 2017, 231(12): 1552

DOI      URL     [本文引用: 1]

Berman D, Erdemir A, Sumant A V.

Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen

[J]. Carbon, 2013, 59: 167

DOI      URL     [本文引用: 1]

Mercado-Solis R D, Mata-Maldonado J G, Quinones-Salinas M A, et al.

Micro-scale abrasive wear testing of CrN duplex PVD coating on pre-nitrided tool steel

[J]. Mater. Res-Ibero-am. J. Mater., 2017, 20(4): 1092

[本文引用: 1]

Kozisek Z.

Crystallization in small droplets: competition between homogeneous and heterogeneous nucleation

[J]. J. Cryst. Growth., 2019, 522: 53

DOI      [本文引用: 1]

Crystals are formed via nucleation and subsequent growth. In many cases, it is not easy to decide if nucleation occurs in the volume (homogeneous nucleation) or on a foreign surface, structure defects etc. (heterogeneous nucleation). This work is focused on crystal nucleation in a small supercooled liquid droplet when nuclei are formed in the volume or on the droplet surface simultaneously. The kinetic equations of homogeneous and heterogeneous nucleation are solved numerically to determine the size distribution of crystal nuclei and nucleation rate of both processes in Ni liquid droplet. The decrease of the number of atoms within the droplet volume in consequence of homogeneous and heterogeneous nucleation is taken into account. The number of nucleation sites on droplet surface decreases as new heterogeneous nuclei are formed. It is shown how both nucleation processes occur simultaneously.

Seehra M S, Narang V, Geddam U K, et al.

Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification

[J]. Carbon, 2017, 111: 380

DOI      PMID      [本文引用: 1]

Structural properties of sixteen (16) commercial samples of graphene-based materials (GBM) labelled as graphene, graphene oxide or reduced graphene oxide are investigated at room temperature using X-ray diffraction (XRD) and Raman spectroscopy. Based on the observed correlation between the results obtained with these two techniques, these samples are classified into three groups: Group A of seven samples consisting of graphitic nanosheets with evaluated thickness ≃20 nm and exhibiting both the 2H and 3R phases in XRD; Group B of six samples exhibiting XRD spectra characteristic of either graphene oxides (GO) or carbons with some order; and Group C of three samples with XRD spectra characteristic of disordered carbons. The relative intensities and widths of D, G, D', 2D and (D + D') bands in the Raman spectra are equally distinguishable between the samples in groups A, B and C. The width of the D-band is the smallest for Group A samples, intermediate for group B and the largest for group C samples. The intensity ratio I(D)/I(G) of the D and G bands in the Raman spectra of the samples is used to quantify the Raman-active defects whose concentration increases in going from samples in Group A to those in Group C.

Chen A L, Li Z F, Chen Y.

Influence of silica-core structure on polishing characteristics of core/shell structured composite particles of SiO2/CeO2

[J]. Chinese Journal of Materials Research, 2017, 31(6): 429

[本文引用: 1]

陈爱莲, 李泽锋, 陈 杨.

氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响

[J]. 材料研究学报, 2017, 31(6): 429

DOI      [本文引用: 1]

设计合成了以具有放射状介孔孔道(孔径约2.6 nm)的介孔氧化硅(mSiO<sub>2</sub>)微球(粒径约300 nm)为内核、以CeO<sub>2</sub>纳米颗粒为包覆层(壳厚为15~20 nm)的mSiO<sub>2</sub>/CeO<sub>2</sub>复合颗粒(粒径在330~340 nm),使用场发射扫描电镜、透射电镜、X射线衍射、傅里叶转换红外光谱和氮气吸脱附等手段表征了样品的结构。结果表明,使用以实心氧化硅(sSiO<sub>2</sub>)为内核的sSiO<sub>2</sub>/CeO<sub>2</sub>复合颗粒抛光的热氧化硅片其表面粗糙度均方根值(Root-mean-square roughness, RMS)为0.309 nm,材料的去除率(Material removal rate, MRR)为24 nm/min)。mSiO<sub>2</sub>/CeO<sub>2</sub>复合颗粒有利于得到更低的氧化硅片抛光表面粗糙度(RMS=0.267 nm)和更高的抛光速率(MRR=45 nm/min),且能避免出现划痕等机械损伤。SiO<sub>2</sub>/CeO<sub>2</sub>复合颗粒中的氧化硅内核结构,对其抛光特性有明显的影响。

Wang D J, Zhang M Q, Ji Z S, et al.

Process and properties of graphene reinforced Mg-based composite prepared by in-situ method

[J]. Chinese Journal of Materials Research, 2021, 35(6): 474

[本文引用: 1]

王殿君, 张明秋, 吉泽升, 张吉生 .

原位自生法制备石墨烯增强镁基复合材料的工艺和性能

[J]. 材料研究学报, 2021, 35(6): 474

[本文引用: 1]

Nanda S S, Kim M J, Yeom K S, et al.

Raman spectrum of graphene with its versatile future perspectives

[J]. Trac-Trends. Anal. Chem., 2016, 80: 125

DOI      URL     [本文引用: 1]

Yang H, Li F, Shan C, et al.

Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement

[J]. J. of Mater. Chem., 2009, 19(26): 4632

DOI      URL     [本文引用: 1]

Wan Y J, Gong L X, Tang L C, et al.

Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide

[J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79

[本文引用: 1]

Gulzar M, Masjuki H H, Kalam M A, et al.

Tribological performance of nanoparticles as lubricating oil additives

[J]. Journal of Nanoparticle Research, 2016, 18(8): 223

DOI      URL     [本文引用: 1]

Guo J D, Peng R L, Du H, et al.

The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement

[J]. Nanomaterials, 2020, 10(2): 12

DOI      URL     [本文引用: 1]

One of the prerequisites of successful address delivery is controlling the release of encapsulated drugs. The new method of bacterial spore encapsulation in polyelectrolyte microcapsules allows for degrading the nanoscale membrane shell of microcapsules. The possibility of encapsulating spore forms of Bacillus subtilis in polystyrenesulfonate sodium/ polyallylamine hydrochloride (PSS/PAH) polyelectrolyte microcapsules was demonstrated. The activation and growth on a nutrient medium of encapsulated bacterial spores led to 60% degradation of the microcapsules nanoscale membrane shell. As a result, 18.5% of Fluorescein isothiocyanatedextran was encapsulated into polyelectrolyte microcapsules, and 28.6% of the encapsulated concentration of FITC-dextran was released into the solution.

Di Puccio F, Mattei L.

Biotribology of artificial hip joints

[J]. World Journal of Orthopedics, 2015, 6: 77

DOI      PMID      [本文引用: 1]

Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion.

Wang W, Zhang G L, Xie G X.

Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives

[J]. Appl. Surf. Sci., 2019, 498: 10

[本文引用: 1]

Qin Y L, Yang Y, Zhao P Y, et al.

Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method

[J]. Chinese Journal of Materials Research, 2020, 34(2): 92

DOI      [本文引用: 1]

Composites of BiOCl-RGO were synthesized via a two-step hydrothermal method. Firstly plain BiOCl was synthesized in the mixed solution of ethylene glycol and deionized water, the acquired nanosphere-like BiOCl of about 400 nm in diameter composed of many nanosheets. Then the RGO carrier was deposited onto the plain BiOCl to prepare BiOCl-RGO nanocomposites. The composites were characterized by Raman spectroscopy, XRD, XPS, SEM and TEM. The photocatalytic property of the composites was evaluated by degrading methyl orange. The results show that the temperature of hydrothermal process significantly affects the photocatalytic property of the composites. The composite of BiOCl -graphene prepared at 140°C shows the highest photocatalytic performance.

秦艳利, 杨 艳, 赵鹏羽

, 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02):92

[本文引用: 1]

Hou J, Yang P Z, Zheng Q H, et al.

Preparation and performance of graphite/TiO2 composite photocatalyst

[J]. Chinese Journal of Materials Research, 2021, 35(9): 703

[本文引用: 1]

侯 静, 杨培志, 郑勤红 .

石墨/TiO2复合光催化剂的制备和性能

[J]. 材料研究学报, 2021, 35(9): 703

[本文引用: 1]

Qi H M, Hu C, Li J, et al.

Tribological performance of PTFE and its composite in wide temperature range

[J]. Tribology, 2022, 42(1): 65

[本文引用: 1]

齐慧敏, 胡 超, 李 洁 .

宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究

[J]. 摩擦学学报, 2022, 42(1): 65

[本文引用: 1]

Hamrock B J, Dowson D.

Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results

[J]. Journal of Lubrication Technology, 1977, 99(2): 264

DOI      URL     [本文引用: 1]

Utilizing the theory developed by the authors in an earlier publication, the influence of the ellipticity parameter, the dimensionless speed, load, and material parameters on minimum film thickness was investigated. The ellipticity parameter was varied from one (a ball on a plate configuration) to eight (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. The dimensionless load parameter was varied over a range of one order of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of paraffinic and naphthenic mineral oils were considered in obtaining the exponent in the dimensionless material parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula given below as H¯min=3.63U0.68G0.49W−0.073(1−e−0.68k) A simplified expression for the ellipticity parameter was found where k=1.03RyRx0.64 Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

Mosey N J, Woo T K J T J O P C A.

A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives

[J]. Journal of Physical Chemistry A, 2004, 108(28): 6001

DOI      URL     [本文引用: 1]

Oztas T, Sen H S, Durgun E, et al.

Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

[J]. Journal of Physical Chemistry C, 2014, 118(51): 30120

DOI      URL     [本文引用: 1]

Tang H, Cao K, Wu Q, et al.

Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles

[J]. Crystal Research and Technology, 2011, 46(2): 195

DOI      URL    

Li J F, Shi Q, Zhu H, et al.

Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets

[J]. Ind. Lubr. Tribol., 2018, 70(3): 560

DOI      URL     [本文引用: 1]

This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed.

Wang Y N, Wan Z P, Lu L S, et al.

Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles

[J]. Tribology International, 2018, 124: 10

DOI      URL     [本文引用: 1]

Nguyen D, Xie X D, Wen G, et al.

Research on tribological behavior of TiN nanoparticles as lubricating additive

[J]. Lubrication Engineering, 2015, 40(9): 42

[本文引用: 1]

阮亭纲, 谢先东, 文 广 .

纳米TiN润滑油添加剂的摩擦学性能研究

[J]. 润滑与密封, 2015, 40(9): 42

[本文引用: 1]

Li C J, Tang W W, Tang X Z, et al.

A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems

[J]. Tribology International, 2022, 167: 12

[本文引用: 1]

/