Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 423-431    DOI: 10.11901/1005.3093.2022.167
  研究论文 本期目录 | 过刊浏览 |
Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响
李桥1, 牛犇1, 张瑞谦2, 刘会群3, 林国强1, 王清1()
1.大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024
2.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
3.中南大学材料科学与工程学院 长沙 410083
Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy
LI Qiao1, NIU Ben1, ZHANG Ruiqian2, LIU Huiqun3, LIN Guoqiang1, WANG Qing1()
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3.School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
Qiao LI, Ben NIU, Ruiqian ZHANG, Huiqun LIU, Guoqiang LIN, Qing WANG. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. Chinese Journal of Materials Research, 2023, 37(6): 423-431.

全文: PDF(23090 KB)   HTML
摘要: 

在Fe-Cr-Al-Mo-Nb合金中添加Ta和Zr元素,在高纯Ar气氛中制备了四种合金铸锭。对铸锭在1473 K进行2 h均匀化处理后再进行固溶处理,然后将四种合金板在1473 K下退火10 min进而在1073 K和873 K下进行多道次轧制得到金属板材,再对板材进行873 K/24 h时效处理和在不同温度的回溶处理。对不同状态的合金进行金相和扫描电镜组织表征以及力学性能测量,研究了Ta/Zr对这种合金温轧板材中第二相析出演变和显微硬度的影响。结果表明,时效合金主要由粗大的初生Laves相和细小的Laves相粒子构成,Zr元素的添加增加了细小Laves相粒子的析出,延缓了粗大Laves相粒子的析出;随着回溶温度的提高第二相粒子都发生显著的粗化和回溶,Zr和Ta/Zr元素改良的合金都表现出较高的组织稳定性,显著抑制了第二相粒子的高温回溶,在1473 K/1 h热处理后Laves相的体积分数分别为0.1%和0.2%。Zr元素的添加显著抑制了高温时晶粒的粗化,这种粗化与高温下Laves相粒子对晶界的钉扎有关。

关键词 金属材料Fe-Cr-Al合金合金化组织稳定性第二相析出    
Abstract

The effect of addition of Ta and Zr on the evolution of the second phase precipitation and microhardness of Fe-Cr-Al-Mo-Nb alloys was investigated. For this purpose, a series of alloy ingots were prepared by vacuum arc melting in high purity Ar gas and homogenized at 1473 K/2 h. After solid solution treatment, the four ingots were hot rolled to produce plates, which then were annealed at 1473 K for 10 min, and then warm rolled successively at 1073 K and 873 K to obtain metal sheets of 2 mm thick, followed by aging treatment at 873 K/24 h and heat treatment at different temperatures. After the final heat treatments, the alloy sheets were characterized by means of XRD, OM, SEM, and EPMA. while their mechanical property was examined by material testing machine. The results show that the aging alloys are mainly composed of two Laves phases with different sizes, and the addition of Zr promoted the precipitation of fine particles, while inhibited the precipitation of coarse particles. With the increase of the heat treatment temperature, the second phase particles are significantly coarsened and redissolved. After heat treatment at 1473 K/1 h, the Zr and Ta/Zr modified alloys exhibited high microstructural stability, but significantly inhibited the re-solvation of the second phase particles, thereby resulted in that the two alloys presented second phase with volume fraction of 0.1% and 0.2% respectively. The addition of Zr also significantly inhibited the coarsening of grains at high temperatures, correspondingly which was associated with the pinning of grain boundaries by Laves phase particles.

Key wordsmetal materials    Fe-Cr-Al alloys    alloying    microstructural stability    the second phase precipitation
收稿日期: 2022-03-25     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(U1867201)
通讯作者: 王 清, 教授,wangq@dlut.edu.cn,研究方向为工程合金材料设计与新材料研发
Corresponding author: WANG Qing, Tel: (0411)84708615, E-mail: wangq@dlut.edu.cn
作者简介: 李桥,男,1995年生,硕士
AlloyFeCrAlMoNbTaZr
No.178.6113.554.752.081.01--
No.278.3613.514.732.080.670.65-
No.378.6113.554.732.080.90-0.11
No.478.2813.504.732.080.450.870.11
表1  设计的Fe-Cr-Al-M合金化学成分(质量分数,%)
图1  No.2合金温轧和时效后的OM以及系列合金轧制态的背散射电子像
图2  系列合金873 K/24 h时效后的XRD谱
图3  Fe-Cr-Al系列合金873 K/24 h时效后的背散射电子像
图4  Fe-Cr-Al系列合金在不同温度回溶处理后的OM
图5  Fe-Cr-Al系列合金在不同温度回溶处理后的背散射电子像
图6  不同状态系列合金的晶粒尺寸、第二相粒子的体积分数和尺寸以及显微硬度
图7  EPMA测试的1473 K/1 h热处理的No.4合金的元素面分布图
M

D0

/ m2·s-1

QM

/ kJ·mol-1

D873 K

/ m2·s-1

D1473 K

/ m2·s-1

Zr1.20×10-6240.844.66×10-213.45×10-15
Ta2.35×10-5220.931.42×10-183.44×10-13
Nb1.27×10-5224.005.02×10-191.45×10-13
Mo1.48×10-2282.601.98×10-191.48×10-12
表2  元素M在BCC铁素体基体中的不同温度下的扩散系数
1 George N M, Terrani K A, Powers J J. Neutronic analysis of candidate accident-tolerant iron alloy cladding concepts [J]. Trans. Am. Nucl. Soc., 2013, 109(2): 121
2 Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments [J]. J. Nucl. Mater., 2013, 440(1-3): 420
doi: 10.1016/j.jnucmat.2013.05.047
3 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy., 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
4 George N M, Terrani K, Powers J, et al. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors [J]. Ann. Nucl. Energy., 2015, 75: 703
doi: 10.1016/j.anucene.2014.09.005
5 Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure [J]. J. Nucl. Mater., 2012, 427(1-3): 396
doi: 10.1016/j.jnucmat.2012.05.007
6 Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
7 Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates [J]. Mater. Sci. Eng. A, 2022, 833: 142550
doi: 10.1016/j.msea.2021.142550
8 Li C L, Ma Y, Hao J M, et al. Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation [J]. Mater. Sci. Eng. A, 2018, 737: 286
doi: 10.1016/j.msea.2018.09.060
9 Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
doi: 10.1016/j.actamat.2018.01.050
10 Capdevila C, Chao J, Jiménez J A, et al. Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy [J]. Mater. Sci. Technol., 2013, 29(10): 1179
doi: 10.1179/1743284713Y.0000000215
11 Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
doi: 10.1016/j.actamat.2017.11.027
12 Shassere B, Yamamoto Y, Poplawsky J, et al. Heterogeneous creep deformations and correlation to microstructures in Fe-30Cr-3Al alloys strengthened by an Fe2Nb Laves phase [J]. Metall. Mater. Trans. A, 2017, 48(10): 4598
doi: 10.1007/s11661-017-4274-8
13 Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
14 Anjum M W, Wen D H, Wang Q, et al. Influence of Ta/Zr minor-alloying on the high-temperature microstructural stability of cladding Fe-Cr-Al ferritic stainless steels [J]. J. Nucl. Mater., 2019, 522: 19
doi: 10.1016/j.jnucmat.2019.05.008
15 Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron [J]. Acta Mater., 2002, 50(16): 4117
doi: 10.1016/S1359-6454(02)00229-X
16 Oono N, Nitta H, Iijima Y. Diffusion of niobium in α-iron [J]. Mate. Trans., 2003, 44(10): 2078
17 Huang S, Worthington D L, Asta M, et al. Calculation of impurity diffusivities in α-Fe using first-principles methods [J]. Acta Mater., 2010, 58(6): 1982
doi: 10.1016/j.actamat.2009.11.041
18 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933
doi: 10.1126/science.aas8815 pmid: 30467166
19 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
20 Zhou N, Jiang S, Huang T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics [J]. Sci. Bull., 2019, 64(12): 856
doi: 10.1016/j.scib.2019.05.007 pmid: 36659675
21 Mayrhofer P H, Kirnbauer A, Ertelthaler P, et al. High-entropy ceramic thin films; A case study on transition metal diborides [J]. Scr. Mater., 2018, 149: 93
doi: 10.1016/j.scriptamat.2018.02.008
22 Zeng Y, Wang D, Xiong X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃ [J]. Nat. Commun., 2017, 8(1): 1
doi: 10.1038/s41467-016-0009-6
23 Hsieh M H, Tsai M H, Shen W J, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf. Coat. Technol., 2013, 221: 118
doi: 10.1016/j.surfcoat.2013.01.036
24 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
25 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.