|
|
Ta/Zr对Fe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响 |
李桥1, 牛犇1, 张瑞谦2, 刘会群3, 林国强1, 王清1( ) |
1.大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024 2.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213 3.中南大学材料科学与工程学院 长沙 410083 |
|
Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy |
LI Qiao1, NIU Ben1, ZHANG Ruiqian2, LIU Huiqun3, LIN Guoqiang1, WANG Qing1( ) |
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China 3.School of Materials Science and Engineering, Central South University, Changsha 410083, China |
引用本文:
李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/Zr对Fe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
Qiao LI,
Ben NIU,
Ruiqian ZHANG,
Huiqun LIU,
Guoqiang LIN,
Qing WANG.
Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. Chinese Journal of Materials Research, 2023, 37(6): 423-431.
1 |
George N M, Terrani K A, Powers J J. Neutronic analysis of candidate accident-tolerant iron alloy cladding concepts [J]. Trans. Am. Nucl. Soc., 2013, 109(2): 121
|
2 |
Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments [J]. J. Nucl. Mater., 2013, 440(1-3): 420
doi: 10.1016/j.jnucmat.2013.05.047
|
3 |
Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy., 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
|
4 |
George N M, Terrani K, Powers J, et al. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors [J]. Ann. Nucl. Energy., 2015, 75: 703
doi: 10.1016/j.anucene.2014.09.005
|
5 |
Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure [J]. J. Nucl. Mater., 2012, 427(1-3): 396
doi: 10.1016/j.jnucmat.2012.05.007
|
6 |
Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
|
7 |
Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates [J]. Mater. Sci. Eng. A, 2022, 833: 142550
doi: 10.1016/j.msea.2021.142550
|
8 |
Li C L, Ma Y, Hao J M, et al. Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation [J]. Mater. Sci. Eng. A, 2018, 737: 286
doi: 10.1016/j.msea.2018.09.060
|
9 |
Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
doi: 10.1016/j.actamat.2018.01.050
|
10 |
Capdevila C, Chao J, Jiménez J A, et al. Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy [J]. Mater. Sci. Technol., 2013, 29(10): 1179
doi: 10.1179/1743284713Y.0000000215
|
11 |
Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
doi: 10.1016/j.actamat.2017.11.027
|
12 |
Shassere B, Yamamoto Y, Poplawsky J, et al. Heterogeneous creep deformations and correlation to microstructures in Fe-30Cr-3Al alloys strengthened by an Fe2Nb Laves phase [J]. Metall. Mater. Trans. A, 2017, 48(10): 4598
doi: 10.1007/s11661-017-4274-8
|
13 |
Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
|
14 |
Anjum M W, Wen D H, Wang Q, et al. Influence of Ta/Zr minor-alloying on the high-temperature microstructural stability of cladding Fe-Cr-Al ferritic stainless steels [J]. J. Nucl. Mater., 2019, 522: 19
doi: 10.1016/j.jnucmat.2019.05.008
|
15 |
Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron [J]. Acta Mater., 2002, 50(16): 4117
doi: 10.1016/S1359-6454(02)00229-X
|
16 |
Oono N, Nitta H, Iijima Y. Diffusion of niobium in α-iron [J]. Mate. Trans., 2003, 44(10): 2078
|
17 |
Huang S, Worthington D L, Asta M, et al. Calculation of impurity diffusivities in α-Fe using first-principles methods [J]. Acta Mater., 2010, 58(6): 1982
doi: 10.1016/j.actamat.2009.11.041
|
18 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
19 |
He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
|
20 |
Zhou N, Jiang S, Huang T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics [J]. Sci. Bull., 2019, 64(12): 856
doi: 10.1016/j.scib.2019.05.007
pmid: 36659675
|
21 |
Mayrhofer P H, Kirnbauer A, Ertelthaler P, et al. High-entropy ceramic thin films; A case study on transition metal diborides [J]. Scr. Mater., 2018, 149: 93
doi: 10.1016/j.scriptamat.2018.02.008
|
22 |
Zeng Y, Wang D, Xiong X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃ [J]. Nat. Commun., 2017, 8(1): 1
doi: 10.1038/s41467-016-0009-6
|
23 |
Hsieh M H, Tsai M H, Shen W J, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf. Coat. Technol., 2013, 221: 118
doi: 10.1016/j.surfcoat.2013.01.036
|
24 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
25 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|