316L不锈钢非比例路径疲劳失效的微观机理
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel
通讯作者: 金丹,教授,jindan76@163.com,研究方向为金属材料的疲劳与断裂
责任编辑: 黄青
收稿日期: 2021-08-13 修回日期: 2022-04-26
基金资助: |
|
Corresponding authors: JIN Dan, Tel:
Received: 2021-08-13 Revised: 2022-04-26
Fund supported: |
|
作者简介 About authors
金丹,女,1976年生,博士
进行316L不锈钢在600℃圆路径下不同应变范围的低周疲劳实验,用透射电子显微镜(TEM)观察疲劳失效断口附近的显微组织,研究了位错结构的路径相关性、幅值相关性以及动态应变时效(Dynamic strain aging,DSA)的路径相关性。结果表明:在室温和600℃的单轴加载变形以平面滑移方式为主,生成了脉络状位错结构;而在圆路径下则生成等轴胞状位错结构,显著降低了材料抵抗变形的能力,在600℃等效应变范围为1.0%条件下的疲劳寿命比单轴路径降低了81%。同时,在圆路径下材料形成胞状位错结构所需最小等效应变范围比单轴的低。600℃圆路径下的DSA效应更为完全,在等效应变范围为1.0%的条件下最大应力跌幅比单轴路径增大了680%;同时,压缩阶段的DSA现象更为显著,锯齿类型由A型经过B型过渡到C型。
关键词:
Low cycle fatigue experiments for 316L stainless steel were carried out under circular loading and different strain ranges at 600℃. The microstructures near the fatigue fracture were observed by transmission electron microscope (TEM). The path correlation and amplitude correlation of dislocation structure and the path correlation of dynamic strain aging (DSA) were investigated based on the experimental results. The results show that at room temperature and 600℃, the planar slip is significant under uniaxial loading and the choroid dislocation structure formed. However, the equiaxed cellular dislocation structures are exhibited under circular loading, which reduces the deformation resistance of the material significantly. For equivalent strain range 1.0%, the fatigue life under circular loading is 81% lower than that of the uniaxial loading at 600℃. At the same time, the minimum equivalent strain range required to form a cellular dislocation structure under the circular loading is lower than that of the uniaxial loading. At 600℃, the DSA effect is more complete under circular loading, and the maximum stress drop for equivalent strain range 1.0% increases by 680% compared with that under uniaxial loading. The DSA phenomenon is more evident in the compression stage, and the sawtooth type gradually transitions from type A, type B to type C.
Keywords:
本文引用格式
金丹, 韩高枫, 龙浩跃, 金铠.
JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai.
316L奥氏体不锈钢具有良好的韧性、塑性、焊接性以及耐腐蚀性能,可用于制造核电站中的热交换器和第四代核反应堆等设备[1]。
在研究316L不锈钢的拉伸以及疲劳特性过程中,观察到了动态应变时效(Dynamic strain aging,DSA)现象[10~17]。Li等[11]的高温低周疲劳试验结果表明,DSA效应发生在250~600℃的较宽温度范围内;应变速率为2×10-4/s时的热活化能值表明,DSA的活性在循环硬化阶段减弱,在软化阶段增强。Nagesha等[12]进行了316L不锈钢的单轴低周疲劳试验,探讨了在不同温度条件下的DSA现象并对比分析了温度对位错微观结构形式的影响。结果表明,在300~550℃位错表现出明显的平面结构;当温度提高到400~600℃时,微观结构为胞状结构。Hong等[13,14]对316L不锈钢的研究得出了类似的结论。Hong等还探讨了DSA效应对316L不锈钢疲劳寿命的影响,发现DSA现象的存在使疲劳寿命降低。陈凌等[15]对316L不锈钢的研究表明,420℃时材料的DSA强化最为显著,同时其循环特性依赖温度和加载历史。Jiang等[16]对316L疲劳蠕变性能的研究表明,动态应变时效预变形处理能有效减小材料的循环应变幅值,提高材料的强度和延长疲劳蠕变寿命。
先前对316L不锈钢DSA效应的研究主要集中在温度、应变幅值以及应变速率等对单轴疲劳性能的影响,而路径对DSA效应影响的研究鲜有报道[17]。本文进行316L不锈钢600℃圆路径不同应变范围下的低周疲劳实验,用透射电子显微镜(TEM) 观察疲劳失效后的显微组织,研究位错结构的应变路径以及应变范围相关性并讨论非比例路径下DSA效应的微观机理。
1 实验方法
实验材料为316L奥氏体不锈钢,将其加工成薄壁圆管试样进行多轴低周疲劳实验。试件的尺寸及形状,如图1所示。
图1
图2
图2
Fig.2
Semi-life hysteretic loops under circular loading for equivalent strain ranges 0.7% and 1.0%
疲劳实验后,对疲劳标距段断口附近的显微组织进行TEM观察。在疲劳样品标距区,用火花线切取厚度为500 μm的薄片;用SiC砂纸沾水将其磨至50 μm,再截成直径为3 mm 的小圆片;最后用MTP-1型双喷减薄仪减薄出TEM 薄膜样品。TEM观察在FEI Tecnai F20透射电镜上进行,工作电压为200 kV。
2 结果和讨论
2.1 位错结构相关性
先前采用TEM技术,针对316L不锈钢的单轴室温、600℃以及圆路径室温下疲劳失效后的微观组织,如图3所示。
图3
图4
图4
不同应变范围下疲劳断口附近的位错结构
Fig.4
Dislocation structure near fatigue fracture for different equivalent strain ranges (a) (b)
2.2 应变幅值相关性
2.3 DSA效应路径相关性的微观机理
在单轴加载中滑移方向单一,可动位错不易逃脱溶质原子气团,使其受阻于障碍物的等待时间长,偏聚到被阻拦可动位错周围的溶质原子数目较多。随着空位浓度的提高部分溶质原子的扩散速度远大于可动位错速度,已钉扎位错拖曳着溶质原子气团运动而较难脱钉,因此DSA现象较弱、应力跌幅较低,锯齿类型仅表现为A型锯齿[18];而圆路径加载下,剪应变作用的引入使位错间相互作用增强,材料中点缺陷增多,溶质原子活性提高,单位时间内偏聚到被阻拦可动位错周围的溶质原子数目增多,DSA现象比单轴路径更完全,如图2所示。同时,圆路径滞回线中锯齿波稠密,锯齿类型呈现出多元化的特点,压缩阶段锯齿类型由A型经过B型逐渐过渡为C型,拉伸阶段锯齿类型由A型逐渐过渡为C型,且压缩阶段的锯齿跌幅更大。
在圆路径下,随着应变幅值的增大塑性变形机理由非DSA状态下的波形滑移模式转变为DSA状态下的平面滑移模式,促进了位错胞和亚晶粒结构的形成(图4),与单轴路径相比材料疲劳寿命显著降低。
3 结论
(1) 在316L不锈钢的多轴疲劳实验中,室温单轴加载形成了脉络状位错结构,而圆路径下则表现出了胞状位错结构。在600℃单轴加载的变形以平面滑移方式为主,位错呈现均匀的条带状,而在圆路径下则表现出等轴胞状位错结构,显著降低了材料抵抗变形的能力,在等效应变范围1.0%下疲劳寿命较单轴路径下的寿命降低了81%。
(2) 位错组态的形成受加载路径和应变幅值共同影响。在600℃单轴路径等效应变范围1.0%条件下材料表现出条带状疲劳位错组态,而在圆路径等效应变范围0.7%条件下材料即表现出了胞状位错结构。
(3) 在600℃圆路径条件下观察到显著的DSA效应,在等效应变范围1.0%条件下最大应力跌幅较单轴路径增加了680%;在压缩阶段锯齿类型由A型、B型,逐渐过渡为C型,比拉伸阶段的DSA现象更为明显。
参考文献
Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing
[J].
Fretting fatigue behavior of 316L stainless steel under combined loading conditions
[J].
High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling
[J].
McKinnell, U. Ramamurty. Fatigue strength of additively manufactured 316L austenitic stainless steel
[J].
Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment
[J].
On nonproportional cyclic properties of type 316 stainless steels
[J].
316不锈钢的非比例循环特性
[J].
Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel
[J].
Low-cycle fatigue life prediction for 316L stainless steel using strain-based model
[J].
基于应变的316L不锈钢低周疲劳寿命预测方法
[J].
Definition of non-proportionality of strain path based on microstructures analysis
[J].
基于微结构分析定义应变路径非比例度
[J].
Review on relationship between dynamic strain aging and environmentally assisted cracking of structural materials used in nuclear power plants
[J].
动态应变时效对核电材料环境致裂影响的研究现状与进展
[J].
Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550℃
[J].
A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel
[J].
Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel
[J].
Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel
[J].
Investigation about low cycle fatigue behavior of 316l steel at room and elevated temperature
[J].
316L钢室温和中温环境下应力控制的低周疲劳行为研究
[J].
Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steelunder different loading conditions
[J].
Dynamic strain aging of 316l stainless steel under circular loading
[J].
316L不锈钢圆路径下的动态应变时效分析
[J].
Dynamic strain aging of 316l stainless steel during uniaxial fatigue process at 600℃
[J].
316L不锈钢单轴疲劳动态应变的时效分析
[J].
The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals
[J].
/
〈 |
|
〉 |
