Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 777-785    DOI: 10.11901/1005.3093.2021.492
  研究论文 本期目录 | 过刊浏览 |
GNP-Ni/Cu复合材料的界面调控和强化机理
宗意勋, 李树丰(), 刘磊, 张鑫, 潘登, 吴代惠玉
西安理工大学材料科学与工程学院 西安 710048
Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites
ZONG Yixun, LI Shufeng(), LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu
School of Materials Science and Engineering, Xi´an University of Technology, Xi´an 710048, China
引用本文:

宗意勋, 李树丰, 刘磊, 张鑫, 潘登, 吴代惠玉. GNP-Ni/Cu复合材料的界面调控和强化机理[J]. 材料研究学报, 2022, 36(10): 777-785.
Yixun ZONG, Shufeng LI, Lei LIU, Xin ZHANG, Deng PAN, Daihuiyu WU. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. Chinese Journal of Materials Research, 2022, 36(10): 777-785.

全文: PDF(15369 KB)   HTML
摘要: 

采用粉末冶金法,通过“湿法混合”、放电等离子烧结和热挤压相结合的三步工艺分别制备了石墨烯纳米片(GNP)增强铜基复合材料(GNP-Cu)和GNP-Ni增强铜基复合材料(GNP-Ni/Cu)。通过物相组成和显微组织表征,并结合致密度、电导率和力学性能测试,结果表明:GNP和Ni的含量(质量分数)分别为0.2%和1.5%的GNP-Ni/Cu复合材料,其显微硬度和屈服强度比纯Cu分别提高了38%和50%、比0.2GNP/Cu复合材料分别提高了14.0%和11.6%。这些结果表明,Ni的添加改善了GNP与Cu的界面结合,使GNP-Ni/Cu复合材料的力学性能显著提高。GNP的载荷传递强化和热失配强化以及Ni的固溶强化,是材料力学性能提高的主要原因。

关键词 复合材料粉末冶金法力学性能界面调控强化机理    
Abstract

Graphene nanosheets (GNP) reinforced Cu-based composites GNP-Cu and GNP-Ni/Cu were prepared via a three-step process, i.e. wet mixing powders of Cu, Ni and GNP, then spark plasma sintering and finally hot extrusion. The phase composition, microstructure, density, electrical conductivity, and mechanical properties of GNP-Ni/Cu composites were characterized, and the mechanism of GNP and Ni strengthening GNP-Ni /Cu composites was also investigated. The results show that the microhardness and yield strength of GNP-Ni/Cu composite with 0.2% GNP and 1.5% Ni (in mass fraction) are 38% and 50% higher than those of simple Cu, and 14.0% and 11.6% higher than those of 0.2GNP/Cu composite, respectively. These results indicate that the interface bonding between GNP and Cu was improved by Ni addition, and the mechanical properties of GNP-Ni/Cu composites were significantly improved. The load transfer strengthening and thermal mismatch strengthening of GNP and the Ni solution strengthening are the main causes for the improvement of mechanical properties of materials.

Key wordscomposites    powder metallurgy    mechanical properties    interface control    strengthening mechanism
收稿日期: 2021-08-24     
ZTFLH:  TF124  
基金资助:国家自然科学基金(51871180)
作者简介: 宗意勋,男,1995年生,硕士生
图1  铜基复合材料制备方法示意图
图2  原始粉末的显微组织
图3  原始GNP、0.2GNP/Cu和0.2GNP-1.5Ni/Cu混合粉末以及挤压态复合材料的拉曼光谱
图4  GNP/Cu和GNP-Ni/Cu混合粉末以及挤压态复合材料的XRD图谱
图5  0.2GNP/Cu和0.2GNP-1.5Ni/Cu复合材料的显微组织
图6  挤压态0.2GNP-1.5Ni/Cu复合材料的TEM照片和对应的选区电子衍射花样和晶格衍射条纹
图7  挤压态纯Cu和CMCs的EBSD结果
图8  纯Cu和CMCs的致密度和电导率
图9  挤压态纯Cu和CMCs的应力-应变曲线
图10  纯Cu和CMCs的断口形貌
图11  各强化机制对GNP-Ni/Cu复合材料屈服强度的理论贡献
1 Zeng Z M. Practical Metal Material Selection Manual [M]. Beijing: China Machine Press, 2012
1 曾正明. 实用金属材料选用手册 [M]. 北京: 机械工业出版社, 2012
2 Liu P, Ren F Z, Jia S G. Copper Alloys and Their Applications [M]. Beijing: Chemical Industry Press, 2007
2 刘 平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007
3 Park S, Shehzad M A, Khan M F, et al. Effect of grain boundaries on electrical properties of polycrystalline graphene [J]. Carbon, 2017, 112: 142
doi: 10.1016/j.carbon.2016.11.010
4 Wang D L, Feng Y, Li S, et al. Manufacturing process and property of Al2O3 dispersion strengthened copper-based composite material [J]. Met. Funct. Mater., 2009, (2): 24
4 王东里, 凤 仪, 李庶 等. Al2O3弥散强化铜基复合材料的制备及性能研究 [J]. 金属功能材料, 2009, (2): 24
5 Zhang P, Jie J, Gao Y, et al. Preparation and properties of TiB2 particles reinforced Cu-Cr matrix composite [J]. Mater. Sci. Eng., A, 2015, 642: 398
doi: 10.1016/j.msea.2015.07.021
6 Zhang S L, Yi Z M. High-strength and high-conductivity copper alloys: Designing considerations and their application [J]. Mater. Rev., 2003, (11): 26
6 张生龙, 尹志民. 高强高导铜合金设计思路及其应用 [J]. 材料导报, 2003, (11): 26
7 Deng J Q, Wu Y C, Chen Y. Comment on research of high strength and electric conductivity copper (alloy) -based composites [J]. Mater. Rev., 2005, (10): 80
7 邓景泉, 吴玉程, 陈勇. 高强高导铜(合金)基复合材料强化与物性研究进展 [J]. 材料导报, 2005, (10): 80
8 Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Mater, 2015: 72
9 Davis J R. Copper and copper alloys[J]. Corrosion, 2001, 3 (2): 527
10 Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets [J]. Mater. Rev., 2015, 29 (4): 143
11 Lv J M, Zhang X H, Xiong D B, et al. Progress and prospect of ultra-conductive copper matrix materials [J]. Mater. China, 2018, 37(6): 453
11 吕吉敏, 章潇慧, 熊定邦 等. 超高导电铜基材料的研究现状与展望 [J]. 中国材料进展, 2018, 37(6): 453
12 Song M H, Zhang Y, Li Y. Effect of graphene content on microstructure and thermal conduction properties of graphene/Cu composites [J]. Heilongjiang Science, 2017, 8 (4): 7
12 宋美慧, 张煜, 李艳. 石墨烯含量对石墨烯/Cu复合材料组织及导热性能的影响 [J]. 黑龙江科学, 2017, 8 (4): 7
13 Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci., 2014, (2): 101
14 Yang M, Hu L, Tang X, et al. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: towards controllable synthesis of high-quality graphitic nanoribbons [J]. Carbon, 2016, (110): 480
15 Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, (96): 212
16 Xue Z W, Wang L D, Zhao P T, et al. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular level dispersion [J]. Mater. Des., 2012, 34: 298
doi: 10.1016/j.matdes.2011.08.021
17 Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular level mixing process [J]. Adv. Mater., 2013, 25(46): 6724
doi: 10.1002/adma.201302495
18 Chen Y, Zhang X, Liu E, et al. Fabrication of three dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, (688): 69
19 Tang Y, Yang X, Wang R, et al. Enhancement of the mechanical properties of graphene copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., A, 2014, 599: 247
doi: 10.1016/j.msea.2014.01.061
20 Jiang R, Zhou X, Liu Z. Electroless Ni plated graphene for tensile strength enhancement of copper [J]. Mater. Sci. Eng., A, 2017, 679: 323
doi: 10.1016/j.msea.2016.10.029
21 Liu P, Zhu E F, Yan C X, et al. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents [J]. Chinese Journal of Rare Metals, 2018, (7): 735
21 刘朋, 朱恩福, 闫翠霞 等. 镍含量对铜基石墨烯复合材料力电性能的影响 [J]. 稀有金属, 2018, (7): 735
22 Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (7): 2417
doi: 10.1016/j.carbon.2012.01.058
23 Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study [J]. J. Phys.: Condens. Matter., 2010, 22 (48): 485301
doi: 10.1088/0953-8984/22/48/485301
24 Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes [J]. Mater. Sci. Eng., A, 2014, 612(26): 440
doi: 10.1016/j.msea.2014.06.077
25 Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1988
26 Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20(6): 4250
doi: 10.1016/j.jiec.2014.01.028
27 Zhang Q, Chen D L. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs [J]. Scripta Mater, 2004, 51(9): 863
doi: 10.1016/j.scriptamat.2004.07.006
28 Meyers M A, Chawla K K. Mechanical behaviour of materials [M]. Saddle River (NJ): Prentice Hall, 1999
29 Zhang Z, Chen D L. Consideration of orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength [J]. Scripta Mater, 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Luster J W, Thumann M, Baumann R. Mechanical properties of aluminium alloy 6061-Al2O3 composites [J]. Mater. Sci. Technol., 1993, 9 (10): 853
doi: 10.1179/026708393790171421
31 Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metallurgica Et Materialia, 1991, 25(1): 33
doi: 10.1016/0956-716X(91)90349-6
32 Wen P, Tao G, Ren B X, et al. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study [J]. Acta Phys. Sin., 2015, 64(12): 126201
doi: 10.7498/aps.64.126201
32 闻鹏, 陶钢, 任保祥 等. 纳米多晶铜的超塑性变形机理的分子动力学探讨 [J]. 物理学报, 2015, 64 (12): 126201
33 Szablewski J, Haimant R. Heat mechanical treatment for copper alloy [J]. Mater. Sci. Technol., 1985, (1): 1053
34 Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation [J]. J. Mater. Res. Technol., 2020, 9 (2): 2299
doi: 10.1016/j.jmrt.2019.12.061
35 Qian L, Xiao Z, Hu W, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy [J]. Mater. Sci. Eng., A, 2017, 697: 37
doi: 10.1016/j.msea.2017.05.001
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.