Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 231-240    DOI: 10.11901/1005.3093.2021.105
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化Ti6Al4V合金的各向异性
刁威, 杜磊, 汪彦博, 周海涛, 孙京丽()
上海航天精密机械研究所 上海 201600
Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting
DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli()
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
引用本文:

刁威, 杜磊, 汪彦博, 周海涛, 孙京丽. 选区激光熔化Ti6Al4V合金的各向异性[J]. 材料研究学报, 2022, 36(3): 231-240.
Wei DIAO, Lei DU, Yanbo WANG, Haitao ZHOU, Jingli SUN. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2022, 36(3): 231-240.

全文: PDF(15538 KB)   HTML
摘要: 

采用金相分析和拉伸测试等方法,分析了激光熔化成形Ti6Al4V试样在不同沉积高度、不同方向截面的组织和性能。结果表明,平行于沉积方向的截面其组织类似柱状晶,具有较弱的织构特征;垂直于沉积方向的截面其组织为块状结构,具有较强的织构特征。选区激光熔化成形Ti6Al4V合金在沉积高度方向上的力学性能受柱状晶尺寸的影响,随着沉积高度的增大其抗拉强度和屈服强度先降低后升高而延伸率先提高后降低。织构和熔合不良等缺陷,使试样垂直于沉积方向上的强度和塑性都比平行于沉积方向的试样高。

关键词 金属材料各向异性Ti6Al4V合金选区激光熔化    
Abstract

The microstructure, texture and properties of samples intercepted at different deposition heights and directions of the Ti6Al4V alloy fabricated by selective laser melting were investigated by metallographic analysis, XRD and tensile test. The results show that the vertical section parallel to the building direction presents microstructure of columnar-like prior-β grains filled with acicular martensite, while the cross section perpendicular to the building direction presents a block-like microstructure. The texture for the later cross section is stronger than that for the former one. The size of the columnar prior-β grains influences the mechanical properties along the building direction of the Ti6Al4V alloy fabricated by selective laser melting. The tensile strength and yield strength decrease first and then increase with the increase of deposition height, while the elongation variation has an opposite trend. The strength and plasticity of samples perpendicular to the building direction is higher than those parallel to the building direction due to the formed defects related with the weaker-texture and poor-fusion.

Key wordsmetallic materials    anisotropy    Ti6Al4V alloy    selective laser melting
收稿日期: 2021-01-19     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金(51701116);上海市青年科技启明星计划(19QB1402000);上海市青年科技英才扬帆计划(19YF-142000)
作者简介: 刁威,男,1991年生,硕士生
ElementAlVFeOCNHTi
Content5.5~6.53.5~4.5<0.25<0.13<0.08<0.03<0.0125Bal.
表1  气雾法制备的Ti6Al4V粉末化学成分(质量分数,%)
图1  激光扫描方式和成形件不同截面的示意图
图2  拉伸试样的示意图
图3  用气体雾化法制备的Ti6Al4V粉末的扫描电镜照片
图4  SLM-Ti6Al4V合金垂直沉积方向 的XY面和TOP面的金相组织
图5  SLM-Ti6Al4V合金垂直沉积方向的XY面和TOP面的扫描电镜照片
图6  SLM成形Ti6Al4V合金垂直沉积方向的截面和原始Ti6Al4V粉末的XRD谱
图7  SLM-Ti6Al4V合金不同方向的截面XZ面和XY面的金相组织
图8  SLM-Ti6Al4V合金不同方向截面XZ面和XY面的扫描电镜照片
图9  SLM成形Ti6Al4V合金不同方向截面的XRD谱
Cross-sectionsα'/α phaseβ phase
a/nmc/nma/ca/nm
TOP0.2919080.4658511.595880.322548
XY0.2924200.4661641.594160.322162
XZ0.2933420.4683631.596650.318152
表2  不同沉积高度、不同方向截面的点阵常数和轴比
Cross-sectionsPhase content
α'β
TOP98.36%1.64%
XY99.04%0.96%
XZ99.70%0.3%
XZ[18]99.35%0.65%
XY[30]98.5%1.5%
表3  不同截面中相的质量分数
Crystal planesCross-sections
XYTOPXZ
(100)1.251.754.79
(002)0.000.0010.91
(101)1.000.945.43
(102)49.3153.863.53
(110)46.0539.990.79
(103)1.512.672.57
(112)0.730.583.96
(201)0.020.0220.52
(004)0.080.1130.12
(202)0.050.0717.39
Average10.0010.0010.00
Preferred orientation(102) (110)(102) (110)(002) (201) (004) (202)
表4  不同截面各个晶面的相对织构系数
图10  SLM-Ti6Al4V合金垂直沉积方向的硬度
图11  SLM-Ti6Al4V合金不同方向截面的硬度
图12  SLM-Ti6Al4V垂直于基板试样-纵向XZ (L-XZ)和平行于基板试样-横向XY (T-XY) 的试样
图13  SLM成形的Ti6Al4V不同沉积高度试样的力学性能比较
图14  XZ截面的顶部、中间和底部的金相组织
图15  XZ截面顶部、中间和底部的扫描电镜照片
图16  SLM成形的Ti6Al4V试样不同方向截面的力学性能
图17  沉积态试样中的熔合不良缺陷以及L-XZ试样和T-XY试样的拉伸示意图
1 Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/ni-cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35: 1
1 刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35: 1
2 Wang Y, Jiang J J, Qiao L Y, et al. Study on biological corrosion and biocompatibility of TC4 alloy by selective laser melting [J]. J. Chongqing Univ., 2015, 38(3): 21
2 王 勇, 蒋军杰, 乔丽英 等. 选区激光熔化TC4生物腐蚀和生物相容性分析 [J]. 重庆大学学报, 2015, 38(3): 21
3 Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
4 Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 117
4 李改明, 刘思雨, 战德松 等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33: 117
5 Tolochko N K, Savich V V, Laoui T, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders [J]. Proc. Inst. Mech. Eng., 2002, 216L: 267
6 Wehmöller M, Warnke P H, Zilian C, et al. Implant design and production—a new approach by selective laser melting [J]. Int. Congr. Ser., 2005, 1281: 690
7 Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using "selective laser melting" [J]. Eur. J. Trauma, 2003, 29: 228
8 Kruth J P, Vaerenbergh J V, Naert I, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting [J]. J. Dent. Technol., 2017, 24
9 Laoui T, Tolochko N K, Artushkevich A S, et al. Bone osseointegration tests performed on titanium dental root implants made by laser processing [J]. Int. J. Prod. Dev., 2004, 1: 165
10 Gebhardt A, Schmidt F M, Hötter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry [J]. Phys. Proced., 2010, 5: 543
11 Sarker A, Tran N, Rifai A, et al. Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting [J]. Mater. Des., 2018, 154: 326
12 Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 616A: 1
13 Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 578A: 230
14 Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
15 Wu M W, Lai P H. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2016, 658A: 429
16 Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
17 Zhang Z X, Qu S J, Feng A H, et al. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure [J]. J. Alloys Compd., 2017, 718: 170
18 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science & Technology, 2017
18 杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
19 Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. Int. J. Mach. Tools Manufact., 2009, 49: 916
20 Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
20 张霜银, 林 鑫, 陈 静 等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263
21 Sercombe T, Jones N, Day R, et al. Heat treatment of Ti‐6Al‐7Nb components produced by selective laser melting [J]. Rapid Prototyp. J., 2008, 14: 300
22 Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti‐6Al‐4V alloy produced by selective laser melting of prealloyed powders [J]. Rap. Prototyp. J., 2010, 16: 450
23 Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
24 Bragg W L. The Diffraction of Short Electromagnetic Waves by A Crystal [M]. Cambridge: Cambridge University Press, 1913, 17: 43
25 Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. ASM International, 1994: 125
26 Gokcen N A. Binary Alloy Phase Diagrams [M]. Materials Park, Ohio: ASM International, 1990: 628
27 Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. J. Appl. Crystallogr., 1969, 2: 65
28 Schreiner W N. A standard test method for the determination of RIR values by X-Ray diffraction [J]. Powder Diffr., 1995, 10: 25
29 Buerger M J. Reduced cells [J]. Zeitschr. Für Kristall., 1957, 109: 42
30 Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment [J]. Chin. J. Laser, 2017, 44: 9
30 肖振楠, 刘婷婷, 廖文和 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能 [J]. 中国激光, 2017, 44: 9
31 Bérubé L P, L'Espérance G. A quantitative method of determining the degree of texture of zinc electrodeposits [J]. J. Electrochem. Soc., 1989, 136: 2314
32 Shen C, Xue Y J, Ku X C, et al. Effect of ultrasonic on microstructure and microhardness of Ni-ZrO2 nanocomposite coating [J]. Mater. Mech. Eng., 2010, 34(7): 80
32 申 晨, 薛玉君, 库祥臣 等. 超声波对Ni-ZrO2纳米复合镀层微观结构和显微硬度的影响 [J]. 机械工程材料, 2010, 34(7): 80
33 Antonysamy A A. Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications [D]. Manchester: University of Manchester, 2012
34 Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, 688A: 322
35 Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
36 Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci., 2018, 28: 711
37 Song X, Liu R. Microstructures and tensile behavior of 3D printed Ti-6Al-4V alloy sintered by electron beam melting: an experimental study [J]. Chin. J. Vac. Sci. Technol, 2020, 40: 103
37 宋 新, 刘 锐. 3D打印成形Ti-6Al-4V合金的组织和力学性能分析 [J]. 真空科学与技术学报, 2020, 40: 103
38 Zou T, Zhang M, Chen C J, et al. Study on the microstructure of Ti6Al4V alloy prepared by laser additive manufacturing (3D printing) [J]. Appl. Laser, 2016, 36: 286
38 邹 涛, 张 敏, 陈长军 等. 激光增材制造 (3D 打印) 制备钛合金的微观组织研究 [J]. 应用激光, 2016, 36: 286
39 Li Y. Study on the process and properties of porous metal prepared by laser additive manufacturing(3D printing) [D]. Suzhou: Soochow University, 2015
39 李 洋. 激光增材制造(3D打印)制备生物医用多孔金属工艺及组织性能研究 [D]. 苏州: 苏州大学, 2015
40 Wang W. Research on ill bonding of Ti-6Al-4V titanium alloy in laser rapid repair processing [D]. Xi'an: Northwestern Polytechnical University, 2007
40 王 维. TC4合金激光快速修复过程中熔合不良缺陷的评价研究 [D]. 西安: 西北工业大学, 2007
41 Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015
41 汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015
42 Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
42 刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019
43 Chen Z R, Ji X, Chu R K, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition [J]. Heat Treat. Met., 2018, 43(11): 144
43 陈志茹, 计 霞, 楚瑞坤 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响 [J]. 金属热处理, 2018, 43(11): 144
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.