|
|
选区激光熔化Ti6Al4V合金的各向异性 |
刁威, 杜磊, 汪彦博, 周海涛, 孙京丽( ) |
上海航天精密机械研究所 上海 201600 |
|
Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting |
DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli( ) |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China |
引用本文:
刁威, 杜磊, 汪彦博, 周海涛, 孙京丽. 选区激光熔化Ti6Al4V合金的各向异性[J]. 材料研究学报, 2022, 36(3): 231-240.
Wei DIAO,
Lei DU,
Yanbo WANG,
Haitao ZHOU,
Jingli SUN.
Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2022, 36(3): 231-240.
1 |
Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/ni-cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35: 1
|
1 |
刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35: 1
|
2 |
Wang Y, Jiang J J, Qiao L Y, et al. Study on biological corrosion and biocompatibility of TC4 alloy by selective laser melting [J]. J. Chongqing Univ., 2015, 38(3): 21
|
2 |
王 勇, 蒋军杰, 乔丽英 等. 选区激光熔化TC4生物腐蚀和生物相容性分析 [J]. 重庆大学学报, 2015, 38(3): 21
|
3 |
Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
|
4 |
Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 117
|
4 |
李改明, 刘思雨, 战德松 等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33: 117
|
5 |
Tolochko N K, Savich V V, Laoui T, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders [J]. Proc. Inst. Mech. Eng., 2002, 216L: 267
|
6 |
Wehmöller M, Warnke P H, Zilian C, et al. Implant design and production—a new approach by selective laser melting [J]. Int. Congr. Ser., 2005, 1281: 690
|
7 |
Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using "selective laser melting" [J]. Eur. J. Trauma, 2003, 29: 228
|
8 |
Kruth J P, Vaerenbergh J V, Naert I, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting [J]. J. Dent. Technol., 2017, 24
|
9 |
Laoui T, Tolochko N K, Artushkevich A S, et al. Bone osseointegration tests performed on titanium dental root implants made by laser processing [J]. Int. J. Prod. Dev., 2004, 1: 165
|
10 |
Gebhardt A, Schmidt F M, Hötter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry [J]. Phys. Proced., 2010, 5: 543
|
11 |
Sarker A, Tran N, Rifai A, et al. Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting [J]. Mater. Des., 2018, 154: 326
|
12 |
Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 616A: 1
|
13 |
Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 578A: 230
|
14 |
Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
|
15 |
Wu M W, Lai P H. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2016, 658A: 429
|
16 |
Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
|
17 |
Zhang Z X, Qu S J, Feng A H, et al. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure [J]. J. Alloys Compd., 2017, 718: 170
|
18 |
Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science & Technology, 2017
|
18 |
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
|
19 |
Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. Int. J. Mach. Tools Manufact., 2009, 49: 916
|
20 |
Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
|
20 |
张霜银, 林 鑫, 陈 静 等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263
|
21 |
Sercombe T, Jones N, Day R, et al. Heat treatment of Ti‐6Al‐7Nb components produced by selective laser melting [J]. Rapid Prototyp. J., 2008, 14: 300
|
22 |
Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti‐6Al‐4V alloy produced by selective laser melting of prealloyed powders [J]. Rap. Prototyp. J., 2010, 16: 450
|
23 |
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
|
24 |
Bragg W L. The Diffraction of Short Electromagnetic Waves by A Crystal [M]. Cambridge: Cambridge University Press, 1913, 17: 43
|
25 |
Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. ASM International, 1994: 125
|
26 |
Gokcen N A. Binary Alloy Phase Diagrams [M]. Materials Park, Ohio: ASM International, 1990: 628
|
27 |
Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. J. Appl. Crystallogr., 1969, 2: 65
|
28 |
Schreiner W N. A standard test method for the determination of RIR values by X-Ray diffraction [J]. Powder Diffr., 1995, 10: 25
|
29 |
Buerger M J. Reduced cells [J]. Zeitschr. Für Kristall., 1957, 109: 42
|
30 |
Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment [J]. Chin. J. Laser, 2017, 44: 9
|
30 |
肖振楠, 刘婷婷, 廖文和 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能 [J]. 中国激光, 2017, 44: 9
|
31 |
Bérubé L P, L'Espérance G. A quantitative method of determining the degree of texture of zinc electrodeposits [J]. J. Electrochem. Soc., 1989, 136: 2314
|
32 |
Shen C, Xue Y J, Ku X C, et al. Effect of ultrasonic on microstructure and microhardness of Ni-ZrO2 nanocomposite coating [J]. Mater. Mech. Eng., 2010, 34(7): 80
|
32 |
申 晨, 薛玉君, 库祥臣 等. 超声波对Ni-ZrO2纳米复合镀层微观结构和显微硬度的影响 [J]. 机械工程材料, 2010, 34(7): 80
|
33 |
Antonysamy A A. Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications [D]. Manchester: University of Manchester, 2012
|
34 |
Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, 688A: 322
|
35 |
Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
|
36 |
Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci., 2018, 28: 711
|
37 |
Song X, Liu R. Microstructures and tensile behavior of 3D printed Ti-6Al-4V alloy sintered by electron beam melting: an experimental study [J]. Chin. J. Vac. Sci. Technol, 2020, 40: 103
|
37 |
宋 新, 刘 锐. 3D打印成形Ti-6Al-4V合金的组织和力学性能分析 [J]. 真空科学与技术学报, 2020, 40: 103
|
38 |
Zou T, Zhang M, Chen C J, et al. Study on the microstructure of Ti6Al4V alloy prepared by laser additive manufacturing (3D printing) [J]. Appl. Laser, 2016, 36: 286
|
38 |
邹 涛, 张 敏, 陈长军 等. 激光增材制造 (3D 打印) 制备钛合金的微观组织研究 [J]. 应用激光, 2016, 36: 286
|
39 |
Li Y. Study on the process and properties of porous metal prepared by laser additive manufacturing(3D printing) [D]. Suzhou: Soochow University, 2015
|
39 |
李 洋. 激光增材制造(3D打印)制备生物医用多孔金属工艺及组织性能研究 [D]. 苏州: 苏州大学, 2015
|
40 |
Wang W. Research on ill bonding of Ti-6Al-4V titanium alloy in laser rapid repair processing [D]. Xi'an: Northwestern Polytechnical University, 2007
|
40 |
王 维. TC4合金激光快速修复过程中熔合不良缺陷的评价研究 [D]. 西安: 西北工业大学, 2007
|
41 |
Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015
|
41 |
汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015
|
42 |
Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
|
42 |
刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019
|
43 |
Chen Z R, Ji X, Chu R K, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition [J]. Heat Treat. Met., 2018, 43(11): 144
|
43 |
陈志茹, 计 霞, 楚瑞坤 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响 [J]. 金属热处理, 2018, 43(11): 144
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|