Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 321-329    DOI: 10.11901/1005.3093.2021.159
  研究论文 本期目录 | 过刊浏览 |
超细晶6061铝合金的搅拌摩擦制备和性能
王贝贝1,2, 刘沿东1, 薛鹏2(), 倪丁瑞2, 肖伯律2, 马宗义2
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Prepration and Mechanical Properties of Ultrafine-grained 6061 Al-alloy by Friction Stir Process
WANG Beibei1,2, LIU Yandong1, XUE Peng2(), NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王贝贝, 刘沿东, 薛鹏, 倪丁瑞, 肖伯律, 马宗义. 超细晶6061铝合金的搅拌摩擦制备和性能[J]. 材料研究学报, 2021, 35(5): 321-329.
Beibei WANG, Yandong LIU, Peng XUE, Dingrui NI, Bolv XIAO, Zongyi MA. Prepration and Mechanical Properties of Ultrafine-grained 6061 Al-alloy by Friction Stir Process[J]. Chinese Journal of Materials Research, 2021, 35(5): 321-329.

全文: PDF(6436 KB)   HTML
摘要: 

对6061铝合金进行常规空冷和强制水冷的搅拌摩擦加工(FSP)并研究其微观组织和力学性能,结果表明:FSP 6061铝合金的加工区均为细小等轴的超细晶组织,晶内位错密度较低、高角晶界的比例均高于70%;采用强制水冷,可将FSP 6061铝合金的平均晶粒尺寸细化到200 nm。FSP 6061铝合金中的析出相主要为球状或短棒状,采用强制水冷使析出相的长大受到明显抑制并使部分固溶元素不能及时析出,使析出相的尺寸与间距明显减小。与常规空冷相比,在强制水冷条件下FSP制备的6061铝合金具有更高的细晶强化和沉淀强化效果,其抗拉强度高达505 MPa,比峰时效态6061铝合金母材提高了55%

关键词 金属材料超细晶材料搅拌摩擦加工力学性能强化机制    
Abstract

6061 Al-alloy plates were prepared by friction stir process (FSP) with conventional air cooling and additional water cooling, and the microstructure and mechanical properties of the FSP 6061 Al-alloys were investigated. Results show that the processed zone was characterized as equiaxed uniform ultrafine-grained (UFG) microstructure with low dislocation density and high fraction of high angle grain boundaries (>70%), and the average grain size was refined to 200 nm in the condition of additional water cooling. Spherical and rod-like precipitates were observed in the FSP 6061 Al-alloy. The applying of additional water cooling suppressed the growth of precipitates, led to the solid solution of some elements in the matrix, and reduction of precipitate size and space. The FSP 6061 Al-alloy prepared with additional water cooling exhibited higher effect of grain boundary strengthening and precipitation strengthening, resulting in a high ultimate tensile strength of 505 MPa, which was 55% higher than that of the 6061 Al-alloy of peak aging state.

Key wordsmetallic materials    ultrafine grain material    friction stir processing    mechanical properties    strengthening mechanism
收稿日期: 2021-03-02     
ZTFLH:  TG146  
基金资助:国家自然科学基金(52071317);中国科学院青年创新促进会基金(2017236)
作者简介: 王贝贝,男,1990年生,博士生
MgSiFeMnCuZnAl
1.080.590.200.200.210.25Bal.
表1  6061铝合金板材的化学成分
图1  FSP和用于拉伸实验和微观组织观察试样的位置示意图
图2  FSP 6061铝合金的横截面形貌
图3  FSP 6061铝合金加工区EBSD微观组织
图4  母材以及FSP 6061铝合金的TEM照片
图5  W-300样品析出相的高倍TEM照片
图6  母材与FSP 6061铝合金的拉伸工程应力-应变曲线和加工硬化率曲线
图7  A-300和W-300 样品的拉伸断口形貌
图8  用不同方法制备的6xxx系铝合金的抗拉强度[27~33]
图9  A-300和W-300样品的不同强化机制对其屈服强度的贡献
1 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
2 Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
3 Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science [J]. Acta Mater., 2013, 61: 782
4 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
5 Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
6 Malekjani S, Hodgson P D, Cizek P, et al. Cyclic deformation response of ultrafine pure Al [J]. Acta Mater., 2011, 59: 5358
7 Chen Y J, Wang Q D, Peng J G, et al. Research and development prospects of ultrafine-grained materials fabricated by severe plastic deformation [J]. Mater. Rev., 2005, 19(4): 77
7 陈勇军, 王渠东, 彭建国等. 大塑性变形制备细晶材料的研究、开发与展望 [J]. 材料导报, 2005, 19(4): 77
8 Zhao X, Gao Y W, Nan Y, et al. Sever plastic deformation methods for bulk nanostructured materials [J]. Mater. Rev., 2003, 17(12): 5
8 赵 新, 高聿为, 南 云等. 制备块体纳米/超细晶材料的大塑性变形技术 [J]. 材料导报, 2003, 17(12): 5
9 Chen F F, Huang H J, Xue P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials [J]. Chin. J. Mater. Res., 2018, 32: 1
9 陈菲菲, 黄宏军, 薛鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018, 32: 1
10 Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
10 薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
11 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
12 Ma Z Y. Friction stir processing technology: a review [J]. Metall. Mater. Trans. A, 2008, 39: 642
13 Yang M, Li C B, Liu S D, et al. Effect of artificial aging on microstructure and mechanical properties of friction stir welded joint of 7003/7046 al-alloys [J]. Chin. J. Mater. Res., 2020, 34: 495
13 杨梦, 李承波, 刘胜胆等. 人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 495
14 Zhang X M, He G Z, Wang B B, et al. Influence of oxide film on fatigue property of friction stir welded 6082 Al alloy [J]. Chin. J. Mater. Res., 2019, 33: 299
14 张欣盟, 何广忠, 王贝贝等. 氧化膜对6082铝合金搅拌摩擦焊接头疲劳性能的影响 [J]. 材料研究学报, 2019, 33: 299
15 Zhao H L, Pan Q, Qin Q D, et al. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy [J]. Mater. Sci. Eng. A, 2019, 751: 70
16 Sauvage X, Dédé A, Muñoz A C, et al. Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys [J]. Mater. Sci. Eng. A, 2008, 491: 364
17 Chen Y C, Feng J C, Liu H J. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys [J]. Mater. Charact., 2009, 60: 476
18 Sato Y S, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063 [J]. Metall. Mater. Trans. A, 2002, 33: 625
19 Cui L, Yang X Q, Zhou G, et al. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints [J]. Mater. Sci. Eng. A, 2012, 543: 58
20 Xue P, Xiao B L, Ma Z Y. Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling [J]. Mater. Des., 2014, 56: 848
21 Wang B B, Chen F F, Liu F, et al. Enhanced mechanical properties of friction stir welded 5083al-H19 joints with additional water cooling [J]. J. Mater. Sci. Technol., 2017, 33: 1009
22 Zeng X H, Xue P, Wang D, et al. Realising equal strength welding to parent metal in precipitation-hardened Al-Mg-Si alloy via low heat input friction stir welding [J]. Sci. Technol. Weld. Join., 2018, 23: 478
23 Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al-Mg-Si alloy with heterogeneous microstructure [J]. Acta Mater., 2016, 103: 547
24 Ninive P H, Strandlie A, Gulbrandsen-Dahl S, et al. Detailed atomistic insight into the β" phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 69: 126
25 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β'' phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3283
26 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
27 Mohamed I F, Lee S, Edalati K, et al. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging [J]. Metall. Mater. Trans. A, 2015, 46: 2664
28 Venkatesh C V, Raman S G S, Uday C. Low cycle fatigue behaviour of Al-Mg-Si Alloy AA6061 processed by equal channel angular pressing [J]. Adv. Mat. Res., 2012, 463-464: 97
29 Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy [J]. Mater. Sci. Eng. A, 2015, 641: 391
30 Chrominski W, Kulczyk M, Lewandowska M, et al. Precipitation strengthening of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion [J]. Mater. Sci. Eng. A, 2014, 609: 80
31 Roven H J, Nesboe H, Werenskiold J C, et al. Mechanical properties of aluminum alloys processed by SPD: Comparison of different alloy systems and possible product areas [J]. Mater. Sci. Eng. A, 2005, 410-411: 426
32 Rezaei M R, Toroghinejad M R, Ashrafizadeh F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy [J]. J. Mater. Process. Technol., 2011, 211: 1184
33 Kim J K, Jeong H G, Hong S I, et al. Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing [J]. Scr. Mater., 2001, 45: 901
34 Chrominski W, Wenner S, Marioara C D, et al. Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion-influence of ageing temperature [J]. Mater. Sci. Eng. A, 2016, 669: 447
35 Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion [J]. Acta Mater., 2014, 63: 169
36 Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng. A, 2019, 755: 28
37 Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum [J]. Acta Mater., 2005, 53: 4019
38 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
39 Kamikawa N, Hirochi T, Furuhara T. Strengthening mechanisms in ultrafine-grained and sub-grained high-purity aluminum [J]. Metall. Mater. Trans. A, 2019, 50: 234
40 Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
41 Bardel D, Perez M, Nelias D, et al. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy [J]. Acta Mater., 2014, 62: 129
42 Myhr O R, Grong Ø, Andersen S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys [J]. Acta Mater., 2001, 49: 65
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.