Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (2): 143-153    DOI: 10.11901/1005.3093.2020.133
  研究论文 本期目录 | 过刊浏览 |
形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响
陈扬1, 涂坚1,2(), 张琰斌1, 谭力1, 尹瑞森3, 周志明1,2
1.重庆理工大学材料科学与工程学院 重庆 400054
2.重庆市模具技术重点实验室(重庆理工大学) 重庆 400054
3.重庆大学航天航空学院 重庆 400044
Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy
CHEN Yang1, TU Jian1,2(), ZHANG Yanbin1, TAN Li1, YIN Ruisen3, ZHOU Zhiming1,2
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.School of Aerospace Engineering, Chongqing University, Chongqing 400044, China
引用本文:

陈扬, 涂坚, 张琰斌, 谭力, 尹瑞森, 周志明. 形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响[J]. 材料研究学报, 2021, 35(2): 143-153.
Yang CHEN, Jian TU, Yanbin ZHANG, Li TAN, Ruisen YIN, Zhiming ZHOU. Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy[J]. Chinese Journal of Materials Research, 2021, 35(2): 143-153.

全文: PDF(31572 KB)   HTML
摘要: 

在不同温度对Fe47Mn30Co10Cr10B3间隙高熵合金进行不同的形变和退火处理,使用电子背散射衍射和电子通道衬度像等手段对样品进行表征,研究了形变和退火对其微观组织结构演变的影响。结果表明,在小应变量条件下,随着形变温度的降低,主导的形变机制从位错滑移转变为相变诱导塑性;在室温形变条件下,随着应变量的增大,主导的形变机制由位错滑移转变为相变诱导塑性。对大应变量的样品退火,随着退火温度的提高,微观组织从形变态(600℃-5 min)、部分再结晶态(800℃-5 min)到完全再结晶态(1000℃-5 min)的演变。在1000℃退火条件下,随着退火时间的延长,微观组织由部分再结晶态(1 min)演变到完全再结晶态(5 min和15 min),且相组成由γ单相演变为γ+ε双相。退火不能改变形变态中第二相颗粒沿着轧向的分布。拉伸实验结果表明合金的屈服强度为326 MPa,抗拉强度为801.9 MPa,延伸率为26.8%,实现了较好的强韧化性能且其断裂机制为韧性断裂。

关键词 金属材料高熵合金相变诱导塑形强韧化    
Abstract

The effect of deformation (deformation degree and deformation temperature) and annealing (annealing temperature and annealing time) on the microstructural evolution of Fe47Mn30Co10Cr10B3 high-entropy alloy were systematically investigated by electron backscattered diffraction and electron channeling contrast. The dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity with the decreasing deformation temperature in case the strain is small. At room temperature, with the increasing strain the dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity while second phase particles precipitate along the rolling direction. During recrystallization annealing treatment of the heavy deformed alloy, with the increasing annealing temperature the alloy presented the following microstructure evolution namely, changed from deformed microstructure (600℃-5 min) to partial recrystallization (800℃-5 min) and then complete recrystallization (1000℃-5 min). For the annealing at temperature (1000℃) with the increasing annealing time the microstructural evolution undergoes partial recrystallization (1 min) and complete recrystallization (5,15 min). In addition, the phase component transforms from single phase (γ) to dual phase (γ + ε). The annealing treatments do not change the distribution of second phase particles along the rolling direction. The high-entropy alloy shows a comprehensive mechanical performance with yield strength of 326 MPa, tensile strength of 801.9 MPa and elongation 26.8%, respectively.

Key wordsmetallic materials    high-entropy alloy    transformation-induced plasticity    strength-ductility
收稿日期: 2020-04-21     
ZTFLH:  TG113.1  
基金资助:重庆市教委科技研究项目(KJQN201801139);国家博士面上资助(2018M632250)
作者简介: 陈扬,男,1995年生,硕士生
图1  实验用样品的制备过程和实验过程的流程
图2  Fe47Mn30Cr10Co10B3高熵合金的相成分随温度变化和均匀态样品的微观组织
图3  形变温度为液氮低温、室温(26℃)和高温(800℃)形变量为10%时样品的微观组织
图4  形变温度为液氮低温、室温(26℃)或高温(800℃)形变量为10%时均匀态样品的EBSD图
图5  均匀态样品在常温下形变量分别为R-10%、R-30%和R-60%的微观组织
图6  在常温下形变量为60%的样品在600℃、800℃和1000℃退火后的微观组织图
图7  在常温下形变量为60%的样品在1000℃退火1 min、5 min和15 min后的微观组织
图8  在常温下形变60%的样品1000℃退火1 min、5 min和15 min的EBSD图
图9  不同状态样品的硬度变化图、工程应力-应变曲线和断口形貌
图10  不同形变和退火工艺处理后Fe47Mn30Co10Cr10B3双相间隙高熵合金样品的微观组织演变过程的示意图
1 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Mater. Res. Lett., 2014, 2(3): 107
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta. Mater., 2017, 122: 448
3 Chen P Y, Lee C, Wang S Y, et al. Fatigue behavior of high-entropy alloys: A review [J]. Sci. China. Technol. Sci., 2018, 61(2): 168
4 Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloy. Compd., 2018, 760: 15
5 Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: a review [J]. Mater. Res. Lett., 2018, 6(4): 199
6 Qiu Y, Gibson M A, Fraser H L, et al. Corrosion characteristics of high entropy alloys [J]. Mater. Sci. Technol., 2015, 31(10): 1235
7 Guo J, Tang C, Rothwell G, et al. Welding of high entropy alloys-A review [J]. Entropy, 2019, 21(4): 431
8 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta. Mater., 2013, 61(15): 5743
9 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
10 Li Z Z., Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
11 Liu Y, Xu K,Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy Alloy [J]. Chin. J. Mater. Res., 2020, 34(7): 535
11 刘怡, 徐康, 涂坚. 高熵合金FeCoNiTi的微观组织演变和强韧化行为, 材料研究学报, 2020, 34(7): 535
12 Huang H, Wu Y, He J, et al. Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29(30): 1701678
13 G M S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng. A, 2012, 532: 480
14 Du B, Sheng L, Cui C, et al. Precipitation and evolution of grain boundary boride in a nickel-based superalloy during thermal exposure [J]. Mater. Charact., 2017, 128: 109
15 Ma Y L, Liu Y, Zhang L P, et al. Effect of B content on morphology and properties of BN phase in martensite heat resistant steel [J]. Chin. J. Mater. Res., 2017, 31(5): 345
15 马煜林, 刘越, 张莉萍等. B含量对马氏体耐热钢中BN相形态及性能的影响 [J]. 材料研究学报, 2017, 31(5): 345
16 Seol J B, Bae J W, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta. Mater., 2018, 151: 366
17 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
18 Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition [J]. Metallurgical and Materials Transactions A, 2004, 35(5): 1465
19 Cheng W C, Chang J J M C. Complex Widmansttten plates consisting of cementite and ferrite, product phases of a eutectoid reaction, in an Fe-C-Mn alloy [J]. Mater. Charact., 2013, 77: 53
20 Singh R, Bind A, Singh J, et al. Development and characterization of microstructure and mechanical properties of heat-treated Zr-2.5Nb alloy for AHWR pressure tubes [J]. Mater. performance. charact., 2013, 2(1): 120
21 Tan H, Guo M, Clare A T, et al. Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed energy deposition [J]. J. Mater. Sci., 2019, 3: 2027
22 Herrera C, Ponge D, Raabe D J A M. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta. Mater., 2011, 59(11): 4653
23 Sun F, Zhang J, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta. Mater., 2013, 61(17): 6406
24 Li Z, Körmann F, Grabowski B, et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta. Mater., 2017, 136: 262
25 Behravan A, Zarei-Hanzaki A, Ghambari M, et al. Correlation between warm deformation characteristics and mechanical properties of a new TRIP-assisted Fe-MN-Ni steel [J]. Mater. Sci. Eng, A., 2015, 649: 27
26 Morsi K, Patel V. Processing and properties of titanium-titanium boride (TiBw) matrix composites-a review [J]. J. Mater. Sci., 2007, 42(6): 2037
27 Singh G, Ramamurty U. Boron modified titanium alloys [J]. Progr. Mater. Sci., 2020, 100653
28 Li G, Liu M, Wang H, et al. Effect of the Rare Earth Element Yttrium on the Structure and Properties of Boron-Containing High-Entropy Alloy [J]. JOM, 2020, 72: 2332
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.