|
|
形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响 |
陈扬1, 涂坚1,2( ), 张琰斌1, 谭力1, 尹瑞森3, 周志明1,2 |
1.重庆理工大学材料科学与工程学院 重庆 400054 2.重庆市模具技术重点实验室(重庆理工大学) 重庆 400054 3.重庆大学航天航空学院 重庆 400044 |
|
Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy |
CHEN Yang1, TU Jian1,2( ), ZHANG Yanbin1, TAN Li1, YIN Ruisen3, ZHOU Zhiming1,2 |
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China 2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China 3.School of Aerospace Engineering, Chongqing University, Chongqing 400044, China |
引用本文:
陈扬, 涂坚, 张琰斌, 谭力, 尹瑞森, 周志明. 形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响[J]. 材料研究学报, 2021, 35(2): 143-153.
Yang CHEN,
Jian TU,
Yanbin ZHANG,
Li TAN,
Ruisen YIN,
Zhiming ZHOU.
Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy[J]. Chinese Journal of Materials Research, 2021, 35(2): 143-153.
1 |
Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Mater. Res. Lett., 2014, 2(3): 107
|
2 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta. Mater., 2017, 122: 448
|
3 |
Chen P Y, Lee C, Wang S Y, et al. Fatigue behavior of high-entropy alloys: A review [J]. Sci. China. Technol. Sci., 2018, 61(2): 168
|
4 |
Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloy. Compd., 2018, 760: 15
|
5 |
Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: a review [J]. Mater. Res. Lett., 2018, 6(4): 199
|
6 |
Qiu Y, Gibson M A, Fraser H L, et al. Corrosion characteristics of high entropy alloys [J]. Mater. Sci. Technol., 2015, 31(10): 1235
|
7 |
Guo J, Tang C, Rothwell G, et al. Welding of high entropy alloys-A review [J]. Entropy, 2019, 21(4): 431
|
8 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta. Mater., 2013, 61(15): 5743
|
9 |
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
|
10 |
Li Z Z., Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
|
11 |
Liu Y, Xu K,Tu J, et al. Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy Alloy [J]. Chin. J. Mater. Res., 2020, 34(7): 535
|
11 |
刘怡, 徐康, 涂坚. 高熵合金FeCoNiTi的微观组织演变和强韧化行为, 材料研究学报, 2020, 34(7): 535
|
12 |
Huang H, Wu Y, He J, et al. Phase‐transformation ductilization of brittle high‐entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29(30): 1701678
|
13 |
G M S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng. A, 2012, 532: 480
|
14 |
Du B, Sheng L, Cui C, et al. Precipitation and evolution of grain boundary boride in a nickel-based superalloy during thermal exposure [J]. Mater. Charact., 2017, 128: 109
|
15 |
Ma Y L, Liu Y, Zhang L P, et al. Effect of B content on morphology and properties of BN phase in martensite heat resistant steel [J]. Chin. J. Mater. Res., 2017, 31(5): 345
|
15 |
马煜林, 刘越, 张莉萍等. B含量对马氏体耐热钢中BN相形态及性能的影响 [J]. 材料研究学报, 2017, 31(5): 345
|
16 |
Seol J B, Bae J W, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta. Mater., 2018, 151: 366
|
17 |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
|
18 |
Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition [J]. Metallurgical and Materials Transactions A, 2004, 35(5): 1465
|
19 |
Cheng W C, Chang J J M C. Complex Widmansttten plates consisting of cementite and ferrite, product phases of a eutectoid reaction, in an Fe-C-Mn alloy [J]. Mater. Charact., 2013, 77: 53
|
20 |
Singh R, Bind A, Singh J, et al. Development and characterization of microstructure and mechanical properties of heat-treated Zr-2.5Nb alloy for AHWR pressure tubes [J]. Mater. performance. charact., 2013, 2(1): 120
|
21 |
Tan H, Guo M, Clare A T, et al. Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed energy deposition [J]. J. Mater. Sci., 2019, 3: 2027
|
22 |
Herrera C, Ponge D, Raabe D J A M. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta. Mater., 2011, 59(11): 4653
|
23 |
Sun F, Zhang J, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta. Mater., 2013, 61(17): 6406
|
24 |
Li Z, Körmann F, Grabowski B, et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta. Mater., 2017, 136: 262
|
25 |
Behravan A, Zarei-Hanzaki A, Ghambari M, et al. Correlation between warm deformation characteristics and mechanical properties of a new TRIP-assisted Fe-MN-Ni steel [J]. Mater. Sci. Eng, A., 2015, 649: 27
|
26 |
Morsi K, Patel V. Processing and properties of titanium-titanium boride (TiBw) matrix composites-a review [J]. J. Mater. Sci., 2007, 42(6): 2037
|
27 |
Singh G, Ramamurty U. Boron modified titanium alloys [J]. Progr. Mater. Sci., 2020, 100653
|
28 |
Li G, Liu M, Wang H, et al. Effect of the Rare Earth Element Yttrium on the Structure and Properties of Boron-Containing High-Entropy Alloy [J]. JOM, 2020, 72: 2332
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|