Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (2): 154-160    DOI: 10.11901/1005.3093.2020.142
  研究论文 本期目录 | 过刊浏览 |
RF-PECVD法制备类金刚石薄膜
熊文文, 何嵩(), 郑淞生, 程其进, 沈宏勋, 陈朝()
厦门大学能源学院 厦门 361102
Preparation of Diamond-like Carbon Films on Top and Bottom Plates by RF-PECVD
XIONG Wenwen, HE Song(), ZHENG Songsheng, CHENG Qijin, SHENG Hongxun, CHEN Chao()
College of Energy, Xiamen University, Xiamen 361102, China
引用本文:

熊文文, 何嵩, 郑淞生, 程其进, 沈宏勋, 陈朝. 用RF-PECVD法制备类金刚石薄膜[J]. 材料研究学报, 2021, 35(2): 154-160.
Wenwen XIONG, Song HE, Songsheng ZHENG, Qijin CHENG, Hongxun SHENG, Chao CHEN. Preparation of Diamond-like Carbon Films on Top and Bottom Plates by RF-PECVD[J]. Chinese Journal of Materials Research, 2021, 35(2): 154-160.

全文: PDF(4830 KB)   HTML
摘要: 

用射频等离子体增强化学气相沉积(RF-PECVD)法在硅衬底上沉积类金刚石(DLC)薄膜,通过控制甲烷(CH4)与氩气(Ar)流量的比值(VCH4/VAr)分别在上极板和下极板上沉积制备出一系列DLC薄膜,用Raman光谱等检测技术表征了DLC薄膜的结构、表面粗糙度、表面形貌和硬度。结果表明:随着VCH4/VAr比例的改变在下极板可制备出含有不同sp3和sp2杂化态比例(Ssp3/Ssp2)的DLC薄膜。随着VCH4/VAr的提高,在下极板沉积的DLC薄膜的Ssp3/Ssp2杂化态比值先上升后下降,VCH4/VAr=1时的Ssp3/Ssp2杂化态比值达到最高1.34;而在上极板沉积的DLC样品其Ssp3/Ssp2比例没有明显的变化。在上极板进气口沉积样品比在下极板出气口沉积样品重复性好,样品更光滑致密、硬度更高。

关键词 材料结构与性能稳定制备RF-PECVD类金刚石薄膜流量比值衬底位置    
Abstract

Diamond-like carbon (DLC) thin films were deposited on silicon plates, placed at the top and bottom of the reaction chamber respectively, by plasma-enhanced chemical vapor deposition (RF-PECVD). Various DLC thin films were obtained by changing the flow ratio of CH4 and Ar(VCH4/VAr). The structure, surface roughness, surface morphology and hardness of DLC films were characterized by means of Raman spectroscopy and other methods. The results show that DLC films with different Ssp3/Ssp2 ratios could be prepared on bottom plates by changing VCH4/VAr, while the Ssp3/Ssp2 ratio kept constant for DLC films prepared on top plate. The films deposited on top plates placed near the gas inlet are smoother, denser, harder and more reproducible than that on bottom plates placed near the gas outlet.

Key wordsstructure and properties of materials    stable preparation    RF-PECVD    DLC thin films    flow ratio    substrate position
收稿日期: 2020-04-29     
ZTFLH:  TB34  
基金资助:福建省科技厅工业引导项目(2017H0038)
作者简介: 熊文文,男,1994年生,硕士
图1  RF-PECVD腔室结构的示意图
图2  在上极板和下极板制备的VCH4/VAr不同的DLC薄膜的拉曼光谱和分峰谱
VCH4/VAr

Top plate D bond

/cm-1

Top plate G bond

/cm-1

Bottom plate D bond

/cm-1

Bottom plate G bond

/cm-1

PositionFWHMPositionFWHMPositionFWHMPositionFWHM
1:31462153.891558109.62136545.78160539.00
1:21461155.211558111.79133278.83159835.00
1:11465153.391560110.70133486.28160255.70
3:11469153.881557110.81332104.79160563.89
5:11462154.661559110.79134284.32160253.28
7:11457153.791557109.43133923.09160220.60
8:11468153.701560110.34135514.28159321.53
表1  拉曼峰的峰位和半峰宽
图 3  VCH4/VAr对在上极板和下极板制备的DLC薄膜硬度的影响
图4  VCH4/VAr对在上极板和下极板制备的DLC薄膜Ssp3/Ssp2的影响
图5  以CH4为碳源用RF-PECVD方法制备DLC薄膜的机理示意图
图6  RF-PECVD腔室等离子体分布的示意图
VCH4/VArDeposition time/min

Thickness

/nm

Deposition rate

/nm·min-1

Top plateBottom plateTop plateBottom plate
1:330557.68127.6818.604.25
1:230587.00174.3219.575.81
1:130646.55215.5021.557.18
3:130854.86332.7128.5011.09
5:130791.96301.5626.4010.05
7:130626.14129.1220.874.30
8:130386.9147.3212.901.58
表2  薄膜和厚度和沉积速率
图7  VCH4/VAr对在上极板和下极板制备的DLC薄膜表面粗糙度的影响
图8  VCH4/VAr为1时在上极板和下极板沉积的DLC薄膜的AFM表面形貌
图9  VCH4/VAr为1时在上极板(a)和下极板(b)沉积的DLC薄膜样品的SEM照片
1 Shreeharsha R H, Shimizu J, Chen W, et al. Investigation of diamond-like carbon films as a promising dielectric material for triboelectric nanogenerator [J]. Nano Energy, 2019, 60: 875
2 Muguruma T, Iljima M, Brantley W A, et al. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets [J]. Eur. J. Orthod., 2013, 35(2): 216
3 Sakurai K, Hiratsuka M, Nakamori H, et al. Evaluation of sliding properties and durability of DLC coating for medical devices [J]. Diam. Relat. Mat., 2019, 96: 97
4 Robertson J F R. Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R-Rep., 2002, 37(4-6): 129
5 Ghoranneviss M, Elahi A S, Dadashbaba M. Growth of dual DLC and icosahedral boron carbide nano-crystals by HFCVD [J]. Mol. Cryst. Liquid Cryst., 2015, 608(1): 103
6 Wah L, N g, Amalina B, et al. Continuous ultra-thin carbon nitride thin film for magnetic hard disk via post nitrogen plasma treatment [J]. Microsyst. Technol., 2017, 107: 89
7 Chen J L, Ji Y J, Yang Y, et al. The structure and properties of amorphous diamond-like carbon films deposited by helicon wave plasma chemical vapor deposition [J]. Thin Solid Films, 2020, 709: 138
8 Yang Y, Li Y, Na L, et al. Study on the Properties of DLC Films with Si Doping Prepared by Rf-PECVD [J]. Laser & Optoelectronics Progress, 2015, 52(1): 233
9 Ankit K, Varade A, Reddy K N, et al. Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature [J]. Diam. Relat. Mat., 2017, 7(8): 39
10 Srisantirut T, Pengchan W. Optical and electrical properties of diamond-like carbon thin film with deposition by ECR-CVD system [J]. Key Eng. Mater., 2019, 8(14): 47
11 Xiong L W, Gong G H, Wang J H, et al. Pretreatment study on the deposition of diamond-like carbon films on quartz by star-shape MPCVD reactor [J]. Adv. Mat. Res., 2014, 912-914: 288
12 Chen J S, Ting K, Wang H C. Modeling and optimization of nanomechanics of diamond-like carbon by MPCVD using response surface methodology [J]. Adv. Mat. Res., 2009, 79-82: 1321
13 Š Meskinis, Čiegis A, Vasiliauskas A, et al. Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects [J]. Thin Solid Films, 2015, 581: 48
14 Khun N W, Liu E. Linear Sweep Cyclic Voltammetric Behavior of Silicon and Nitrogen Doped Diamond-Like Carbon Thin Film Prepared via Magnetron Co-Sputtering Deposition [J]. Journal of Nanoengineering & Nanomanufacturing, 2015, 5(2): 1
15 Jelinek M, Zemek J, Vandrovcova M, et al. Bonding and bio-properties of hybrid laser/magnetron Cr-enriched DLC layers [J]. Mater. Sci. Eng. C. Mater. Biol. Appl., 2016, 58: 1217
16 Xiang C, Zhang M Y, Chen X H, et al. Fabrication and performance of optoelectronic devices with metal/diamond-like carbon Schottky contact [J]. Solid-State Electron., 2007, 51(3): 423
17 Chowdhury S, Lsugier M T, Rahman I Z. Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering [J]. Thin Solid Films, 2012, 468(1): 149
18 Gan Z. Intrinsic mechanical properties of diamond-like carbon thin films deposited by filtered cathodic vacuum arc [J]. J. Appl. Phys., 2004, 95(7): 3509
19 Bobzin K, Bagcivan N, Goebbels N, et al. Effect of the Substrate Geometry on Plasma Synthesis of DLC Coatings [J]. Plasma Process. Polym., 2009, 6(S10): S425
20 Nelson N, Rakowski R T, Franks J, et al. The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD [J]. Surf. Coat. Technol., 2014, 254: 73
21 Cheng X. Study on the photoelectric properties of diamond-like carbon films and MSM photoelectric devices [D]. Xiamen: Xiamen University, 2010
21 程翔. 类金刚石薄膜光电性质研究与MSM光电器件探索 [D]. 厦门: 厦门大学, 2010
22 Sheng Z H, Shao L, Chen J J, et al. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis [J]. ACS Nano, 2011, 5(6): 4350
23 Ferrari, Carlo A. Determination of bonding in diamond-like carbon by Raman spectroscopy [J]. Diam. Relat. Mat., 2002, 11(3-6): 1053
24 Baptista D L, ZawislAK F C. Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films [J]. Diam. Relat. Mat., 2004, 13(10): 1791
25 Robertson J. Deposition mechanisms for promoting sp3 bonding in diamond-like carbon [J]. Diam. Relat. Mat., 1993, 2(5-7): 984
26 Harper J D, Charipar N A, MULLIGAN C C, et al. Low-Temperature Plasma Probe for Ambient Desorption Ionization [J]. Anal. Chem., 2008, 80(23): 9097
27 Weimer W A, Cerio F M, Johnson C E. Examination of the chemistry involved in microwave plasma assisted chemical vapor deposition of diamond [J]. J. Mater. Res., 1991, 6(10): 2134
28 Toyoda H, Childs M A, Menningen K L, et al. Ultraviolet spectroscopy of gaseous species in a hot filament diamond deposition system when C2H2 and H2 are the input gases [J]. J. Appl. Phys., 1994, 75(6): 3142
29 Balestrino G, Marinellim, Milani E, et al. Growth of diamond films: General correlation between film morphology and plasma emission spectra [J]. Appl. Phys. Lett., 1992, 62(8): 879
30 Hsu L. W. Gas-phase kinetics during microwave plasma-assisted diamond deposition: Is the hydrocarbon product distribution dictated by neutral-neutral interactions? [J]. J. Appl. Phys., 72(7): 3102
31 Gottscho R A, Burton R H, Flamm D L, et al. Ion dynamics of rf plasmas and plasma sheaths: A time-resolved spectroscopic study [J]. J. Appl. Phys., 1984, 55(7): 2707
[1] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[2] 刘洪喜 蒋业华 周荣 詹肇麟 汤宝寅. 类金刚石薄膜对轴承钢表面机械性能和滚动接触疲劳寿命的影响[J]. 材料研究学报, 2009, 23(1): 43-48.
[3] 郭力军;许念坎;刘正堂;张贵锋;郑修麟. 极板负偏压对类金刚石薄膜性质的影响[J]. 材料研究学报, 1994, 8(1): 67-70.