|
|
磁性多孔RGO@Ni复合材料的制备和吸波性能 |
刘佳良1, 陈平1,2( ), 徐东卫1, 于祺3 |
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024 2.大连理工大学 三束材料改性教育部重点实验室 沈阳 116024 3.沈阳航空航天大学 辽宁省先进聚合物基复合材料重点实验室 沈阳 110136 |
|
Preparation and Microwave Absorption Properties of Magnetic Porous RGO@Ni Composites |
LIU Jialiang1, CHEN Ping1,2( ), XU Dongwei1, YU Qi3 |
1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China 3. Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
刘佳良, 陈平, 徐东卫, 于祺. 磁性多孔RGO@Ni复合材料的制备和吸波性能[J]. 材料研究学报, 2020, 34(9): 641-649.
Jialiang LIU,
Ping CHEN,
Dongwei XU,
Qi YU.
Preparation and Microwave Absorption Properties of Magnetic Porous RGO@Ni Composites[J]. Chinese Journal of Materials Research, 2020, 34(9): 641-649.
[1] |
Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties [J]. Nanoscale, 2014, 6: 2447
doi: 10.1039/c3nr05238a
pmid: 24452196
|
[2] |
Ma X H, Li Y, Shen B, et al. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2018, 10: 38255
doi: 10.1021/acsami.8b15545
pmid: 30360062
|
[3] |
Song W L, Guan X T, Fan L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding [J]. J. Mater. Chem., 2015, 3A: 2097
|
[4] |
Li X Y, Huang X L, Liu D P, et al. Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery [J]. J. Phys. Chem., 2011, 115C: 21567
|
[5] |
Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
|
[6] |
Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem., 2016, 4C: 10518
|
[7] |
Zeng Q, Chen P, Yu Q, et al. Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties [J]. Chin. J. Mater. Res., 2018, 32: 119
|
[7] |
(曾强, 陈平, 于祺等. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 [J]. 材料研究学报, 2018, 32: 119)
|
[8] |
Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32: 161
|
[8] |
(褚海荣, 陈平, 于祺等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32: 161)
|
[9] |
Liu J, Cao M S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature [J]. ACS. Appl. Mater. Interfaces, 2016, 8: 22615
pmid: 27509241
|
[10] |
Liu P B, Huang Y. Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties [J]. J. Polym. Res., 2014, 21: 430
|
[11] |
Qiu B C, Xing M Y, Zhang J L. Recent advances in three-dimensional graphene based materials for catalysis applications [J]. Chem. Soc. Rev., 2018, 47: 2165
doi: 10.1039/c7cs00904f
pmid: 29412198
|
[12] |
Han M K, Yin X W, Kong L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem., 2014, 2A: 16403
|
[13] |
Kim T Y, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores [J]. ACS Nano, 2013, 7: 6899
doi: 10.1021/nn402077v
pmid: 23829569
|
[14] |
Tong G X, Hu Q, Wu W H, et al. Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties [J]. J. Mater. Chem., 2012, 22: 17494
doi: 10.1039/c2jm31790g
|
[15] |
Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
|
[16] |
Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
|
[17] |
Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem., 2015, 3C: 10232
|
[18] |
Zong M, Huang Y, Zhao Y, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites [J]. RSC Adv., 2013, 3: 23638
|
[19] |
Zhou M, Zhang X, Wei J M, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures [J]. J. Phys. Chem., 2011, 115C: 1398
|
[20] |
Sun G B, Dong B X, Cao M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption [J]. Chem. Mater., 2011, 23: 1587
|
[21] |
Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties [J]. Nano Res., 2017, 10: 331
|
[22] |
Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11108
pmid: 29514457
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|