Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 272-276    DOI: 10.11901/1005.3093.2019.330
  研究论文 本期目录 | 过刊浏览 |
自旋阀多层膜磁化翻转场的调控和磁电阻特性
谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海()
甘肃省科学院传感技术研究所 甘肃省传感器与传感技术重点实验室 兰州 730000
Magnetization Reversal Field and Magneto-Resistor of Spin Valve
TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai()
Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China
引用本文:

谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(4): 272-276.
Xi TAN, Yuzhe SONG, Xin SHI, Jin QIANG, Tingxuan WEI, Qihai LU. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. Chinese Journal of Materials Research, 2020, 34(4): 272-276.

全文: PDF(2885 KB)   HTML
摘要: 

用磁控溅射方法制备Ta/CoFe/Fe/Au/Fe/IrMn/Ta和Ta/CoFe1/Au/CoFe2/IrMn/Ta两种多层膜结构的自旋阀,并优化各功能层的溅射参数有效调控了磁化翻转场和磁电阻特性。根据TEM确定了样品多层膜的微观结构和膜厚,使用VSM和加磁场四探针法分别测量了样品的磁滞回线和磁电阻(MR)特性曲线。结果表明,样品中隔离层Au的厚度与MR值之间存在振荡衰减的关系;而钉扎层、自由层和被钉扎层的厚度直接影响各膜层的矫顽力和饱和磁化强度等磁学性能,进而改变MR值。各层厚度为6/6/3.8/6/9/6 nm的Ta/CoFe1/Au/CoFe2/IrMn/Ta结构自旋阀,具有最佳的MR值。

关键词 金属基复合材料自旋阀磁控溅射磁电阻    
Abstract

Two kinds of spin valve composed of multilayered films of Ta/CoFe/Fe/Au/Fe/IrMn/Ta and Ta/CoFe1/Au/CoFe2/IrMn/Ta were deposited respectively on oxidized silicon wafer by high vacuum magnetron sputtering. Their magneto-resistor characteristics and magnetization reversal fields were tailored by selectively adjusting the processing parameters for each of the function layers. The microstructure and thickness of the multilayered films were characterized by means of TEM. The hysteresis loops and magneto resistance (MR) curves were measured by VSM and four-probe measurement tests. Results show that there exists a relationship of vibration attenuation for the MR values with the thickness of the middle isolation layer Au. Namely, with the increase of the thickness of the Au layer, the vibration attenuation weakened. The coercive force and saturation magnetization of the multilayered films were determined by the thickness of each different function layers, which then alter the MR values directly. There was a best MR value for the multilayered structure of Ta/CoFe1/Au/CoFe2/IrMn/Ta with the following film thickness for each layer: 6/6/3.8/6/9/6 nm.

Key wordsmetal matrix composites    spin valve    magnetron sputtering    magneto-resistor
收稿日期: 2019-07-05     
ZTFLH:  TM271  
基金资助:国家自然科学基金地区科学基金(No. 51761001);甘肃省科学院青年科技创新基金(No. 2017QN-02);甘肃省自然科学基金(No. 17JR5RA180);甘肃省科学院应用研究与开发项目(No. 2018JK-16);甘肃省科学院创新团队建设项目(No. 2020CX005-01);兰州市人才创新创业项目(No. 2016-RC-80);2018年度“西部青年学者”项目
作者简介: 谭稀,女,1991年生,硕士
No. of sampleStructurePower/Wd / nm
ITa/CoFe/Fe/Au/Fe/IrMn/Ta4520/20/20/8/20/30/20
IITa/CoFe1/Au/CoFe2/IrMn/Ta256/6/1.9~5.8/6/9/6
IIITa/CoFe1/Au/CoFe2/IrMn/Ta256/6/3.8/6/5.4~10.8/6
IVTa/CoFe1/Au/CoFe2/IrMn/Ta256/3.6~8.4/3.8/8.4~3.6/9/6
表1  典型样品的溅射工艺参数
图1  样品I的横截面的TEM图
图2  不同Au层厚度对样品II系列自旋阀磁电阻的影响
图3  样品III系列自旋阀的磁滞回线和磁阻特性曲线
图4  样品IV系列自旋阀的磁滞回线和磁阻特性曲线
[1] Thomson W. On the Electro-dynamic qualities of metals: -effects of magnetization on the electric conductivity of nickel and of iron [J]. Proc. R. Soc. London, 1856, 8: 546
[2] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Phys. Rev. BCondens. Matter., 1989, 39(7): 4828
doi: 10.1103/physrevb.39.4828 pmid: 9948867
[3] Baibich M N, Broto J M, Fert A F, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett., 1988, 61(21): 2472
doi: 10.1103/PhysRevLett.61.2472 pmid: 10039127
[4] Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68(25): 3745
doi: 10.1103/PhysRevLett.68.3745 pmid: 10045786
[5] Xiao J, Jiang J, Chien C. Giant magnetoresistance in nonmultilayer magnetic systems [J]. Phys. Rev. Lett., 1992, 68(25): 3749
doi: 10.1103/PhysRevLett.68.3749 pmid: 10045787
[6] Von H R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films [J]. Phys. Rev. Lett., 1993, 71(14): 2331
doi: 10.1103/PhysRevLett.71.2331 pmid: 10054646
[7] Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3 /Fe junction [J]. J. Magn. Magn. Mater., 1995, 139(3): L231
[8] Butler W H, Zhang X G, Schulthess T C, et al. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches [J]. Phys. Rev. BCondens. Matter, 2001, 63(5): 054416
[9] Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction [J]. Phys. Rev. B., 2001, 63(22): 220403
[10] Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nat. Mater., 2004, 3(12): 868
doi: 10.1038/nmat1257 pmid: 15516927
[11] Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J]. Nat. Mater., 2004, 3(12): 862
doi: 10.1038/nmat1256 pmid: 15516928
[12] Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction [J]. Nat. Mater., 2010, 9(9): 721
doi: 10.1038/nmat2804 pmid: 20622862
[13] He J L, Ji S J, Liu Jet al. Review of Current sensor technology based on giant magneto resistive effect and possible applications for smart grids [J]. Power System Technology. 2011, (5): 8
[13] (何金良, 嵇士杰, 刘俊等. 基于巨磁电阻效应的电流传感器技术及在智能电网中的应用前景 [J]. 电网技术, 2011, (5): 8)
[14] Zhang C Q, Zhou F, Qu B J, et al. Study of a novel biosensor based on GMR effect [J]. Micronanoelectronic Technology., 2007, 44(Z1): 373
[14] (张超奇, 周非, 曲炳郡等. 基于GMR效应的新型生物传感器研究 [J]. 微纳电子技术, 2007, 44(Z1): 373)
[15] Mott, N. F. The Electrical Conductivity of Transition Metals [J]. Proc. R. Soc. London, Ser. A, 1936, 153(880): 699
[16] Dieny B, Gurney B A, Metin S, et al. Magnetoresistive sensor based on the spin valve effect [P]. US, US5159513A, 1993
[17] Gao X P, Song Y Z, Han G L, et al. Tune the MR of spin valve by using the pinned layer [J]. Journal of GanSu Sciences, 2014, (3): 59
[17] (高晓平, 宋玉哲, 韩根亮等. 利用被钉扎层调控自旋阀的磁电阻值 [J]. 甘肃科学学报, 2014, (3): 59)
[18] Parkin S S P, More N, Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr [J]. Phys. Rev. Lett., 1990, 64(19): 2304
doi: 10.1103/PhysRevLett.64.2304 pmid: 10041640
[1] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[3] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[4] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[5] 杨雅娜, 陈文革, 薛元琳. 碳纤维表面溅射金属增强铜基复合材料的界面结合[J]. 材料研究学报, 2021, 35(6): 467-473.
[6] 张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
[7] 宋贵宏, 李秀宇, 李贵鹏, 杜昊, 胡方. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[9] 王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.
[10] 胡银生,余欢,徐志锋,蔡长春,聂明明. 纤维预热温度对连续Al2O3f/Al复合材料力学性能的影响[J]. 材料研究学报, 2019, 33(5): 361-370.
[11] 刘晓东,谈淑咏,霍文燚,张旭海,邵起越,方峰. 氮流量比对磁控溅射(CoCrFeNi)Nx高熵合金薄膜的组织和性能的影响[J]. 材料研究学报, 2019, 33(3): 185-190.
[12] 孙乃坤,仲德晗,任增鑫,张扬,刘晓云. Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应[J]. 材料研究学报, 2019, 33(2): 124-130.
[13] 高荣贞, 李晓冬, 刘文凤, 尹艳红, 杨书廷. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-720.
[14] 邱万奇, 王书林, 程奕天, 刘仲武, 钟喜春, 焦东玲, 周克崧. 低温反应溅射沉积α-(Al,Cr)2O3[J]. 材料研究学报, 2018, 32(4): 278-282.
[15] 王丽, 郭鹏, 左潇, 张栋, 黄美东, 柯培玲, 汪爱英. 基体偏压对HiPIMS制备非晶碳膜结构和光电性能的影响[J]. 材料研究学报, 2018, 32(4): 283-289.