Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 703-711    DOI: 10.11901/1005.3093.2020.388
  研究论文 本期目录 | 过刊浏览 |
石墨/TiO2复合光催化剂的制备和性能
侯静1,2, 杨培志1(), 郑勤红1, 杨雯1, 周启航1, 李学铭1
1.云南师范大学 可再生能源材料先进技术与制备教育部重点实验室 昆明 650500
2.攀枝花学院 攀枝花 617000
Preparation and Performance of Graphite/TiO2 Composite Photocatalyst
HOU Jing1,2, YANG Peizhi1(), ZHENG Qinhong1, YANG Wen1, ZHOU Qihang1, LI Xueming1
1.Key Laboratory of Renewable Energy Advanced and Manufacturing Technology, Ministry of Education, Yunnan Normal University, Kunming 650500, China
2.Panzhihua University, Panzhihua 617000, China
引用本文:

侯静, 杨培志, 郑勤红, 杨雯, 周启航, 李学铭. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703-711.
Jing HOU, Peizhi YANG, Qinhong ZHENG, Wen YANG, Qihang ZHOU, Xueming LI. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. Chinese Journal of Materials Research, 2021, 35(9): 703-711.

全文: PDF(19428 KB)   HTML
摘要: 

以石墨和纯的TiO2为原料,采用球磨工艺制备了石墨/TiO2复合光催化剂。使用XRD、SEM、TEM、XPS和DRS等手段对其性能进行了表征。以甲基橙为模拟污染物,研究了石墨掺入量、球磨时间对复合光催化剂光催化活性的影响。结果表明,石墨/TiO2复合光催化剂具有锐钛矿结构,球磨后TiO2(101)面的衍射峰宽化并右移,TiO2成为200 nm左右的不规则球状颗粒,在其表面均匀分布着石墨。TiO2晶粒的Ti-O键的结合能变高,且表面有缺陷产生,使其在可见光区具有显著的吸收。石墨掺入量为5%、球磨时间为12 h的石墨/TiO2样品对甲基橙具有优异的光催化降解效果,在70 min的降解时间内甲基橙的降解去除率可达95.08%。石墨/TiO2复合光催化剂的光催化反应速率常数k为0.043035 min-1,是纯TiO2的2.64倍。

关键词 复合材料石墨/TiO2甲基橙光催化球磨    
Abstract

The composite photocatalyst of graphite/TiO2 was prepared by high-energy ball milling with graphite and pure TiO2 as the raw materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet diffuse reflectance (DRS). The effect of graphite addition and ball milling time on the photocatalytic activity of the prepared composite photocatalyst was investigated by comparison of their degradation efficiencies for the methyl orange as the simulated pollutant. The results show that after ball milling the graphite/TiO2 composite photocatalyst presents an anatase-like X-ray diffraction pattern, the diffraction peak of TiO2(101) plane widened and shifted to the right, the TiO2 particles are irregular spherical around 200 nm, and the graphite uniformly distributed on the TiO2 surface. Because of higher binding energy of TiO2 grains, the defects generated on the surface of the graphite doped TiO2 have significant absorption capacity in the visible light region. The graphite/TiO2 composite photocatalyst with 5 mass% graphite prepared by ball milling for 12 h showed the best photocatalytic degradation effect of methyl orange. After the degradation time of 70 min the degradation removal rate of methyl orange could reach 95.08%, and the reaction rate constant k was 0.043035 min-1, which was 2.64 times that of the pure TiO2.

Key wordscomposites    graphite/TiO2    methyl orange    photocatalysis    ball milling
收稿日期: 2020-09-14     
ZTFLH:  O643  
基金资助:国家自然科学基金(U1802257);云南省基础研究重点项目(2017FA024);云南省高校科技创新团队支持计划,攀枝花大学科技园种子资金
作者简介: 侯静,男,1987年生,博士生
图1  石墨掺入量不同的石墨/TiO2复合光催化剂的 XRD谱
图2  球磨时间不同的5%石墨/TiO2复合光催化剂的XRD谱
图3  球磨时间不同的石墨/TiO2复合光催化剂SEM照片
图4  石墨掺入量不同的石墨/TiO2复合光催化剂SEM照片
图5  5%石墨/TiO2复合光催化剂的EDS分析与元素分布
图6  5%石墨/TiO2复合光催化剂的TEM照片和HRTEM谱
图7  5%石墨/TiO2复合光催化剂的XPS谱
图8  石墨/TiO2复合光催化剂的UV-Vis吸收光谱
图9  石墨掺入量不同的石墨/TiO2复合光催化剂对甲基橙的吸附/光催化降解性能
图10  不同球磨时间的石墨/TiO2复合光催化剂对甲基橙的吸附/光催化降解性能
图11  石墨/TiO2复合光催化剂的光催化反应机理
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
2 Ochiai Tsuyoshi, Fujishima Akira. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247
3 Nakata Kazuya, Fujishima Akira. TiO2 photocatalysis: Designand applications [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169
4 Liao W J, Yang J W, Zhou H, et al. Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradatiaon of contaminants [J]. Electrochimica Acta, 2014, 136(8): 310
5 Kelly P J, West G T, Ratova M, et al. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings [J]. Molecules, 2014, 19(10): 16327
6 Zhang L L, Gao H J, Liao Y W. Enhancement of photocatalytic activity of TiO2 with cross-linked poly (amphoteric ionic liquid)[J].Chinese Journal of Materials Research, 2016, 30(4): 307
6 张娈娈, 高和军, 廖运文. 交联聚两性离子液基材料增强TiO2光催化性能的研究 [J]. 材料研究学报, 2016, 30(4): 307
7 Wang S L, Huo W Y, Xu Z C, et al. Fabrication of films of Co doped TiO2 nanotube array and their photocatalytic reduction performance [J]. Chinese Journal of Materials Research,2020,34(3): 176
7 王世琦, 霍文燚, 徐正超等. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 [J]. 材料研究学报, 2020, 34(3): 176
8 Sabzi M,Mousavi Anijdan S H. Microstructural analysis and optical properties evaluation of Sol-Gel heterostructured NiO-TiO2 film used for solar panels [J]. Ceramics International, 2019, 45(3): 3250
9 Manibalan G, Murugadoss G, Thangamthu R, et al. Facile synthesis of heterostucture CeO-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications [J]. Journal of Alloys and Compounds, 2019, 773: 449
10 Synthesis and photocatalytic performance of heterostructured nano-composite Bi4Ti3O12/TiO2 [J]. Chinese Journal of Materials Research, 2014, 28(7): 503
10 陈侃松, 黎旸, 田寒等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28(07): 503
11 Hao D,Jiang C H,Yang Z M,et al. The preparation of N-doped TiO2 and its photocatalytic property [J]. Chinese Journal of Materials Research, 2013, (3): 247
11 郝栋, 姜春海, 杨振明等. N掺杂TiO2的制备和光催化性能 [J]. 材料研究学报, 2013, (3): 247
12 Reddy K M, Baruwati B, Jayalakshmi M, et al. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study [J]. Journal of Solid State Chemistry, 2005, 178(11): 3352
13 Huang Y, Yang M, Xia J J, et al. Preparation of C/TiO2 composites and study of its photocatalytic property [J]. Journal of Wuhan Polyechnic University, 2014, 33(2): 33
13 黄昱, 杨明, 夏娟娟等. C/TiO2复合材料的制备及光催化性能的研究 [J]. 武汉轻工大学学报, 2014, 33(2): 33
14 Zhou H L, Ge F Z, Zou Z, et al. Progress in C-TiO2 nanocomposite photocatalyst [J]. Materials Reports, 2011, 25(S2): 166
14 周化岚, 葛芳州, 邹忠等. C-TiO2复合光催化剂研究进展 [J]. 材料导报, 2011, 25(S2):166
15 Jong G D, Vittal R, Park N G, et al. Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with TiO2 film deposited on indium zinc oxide substrate [J]. Chemistry of Materials, 2004, 16(3): 493
16 Yang J, Xu M, Wang J Y, et al. A facile approach to prepare multiple heteroatom-doped carbon materials from imine-linked porous organic polymers [J]. Scientific Reports, 2018, 8(1): 4200
17 Molood B, Mohammad B, Reza O M. Photo oxidation DBT using carbon nanotube titania composite as visible light active photo catalyst [J]. Journal of Central South Univ.Technology, (2018) 25: 1642
18 Zhu X Y, Wang C, Wang J J, et al. Preparation and study of carbon-coated TiO2 photocatalyst [J]. Guangzhou Chemical Industry, 2019, 47(16): 18
18 朱雪漪, 王成, 王俊杰等. 碳包覆二氧化钛光催化剂的制备及研究 [J]. 广州化工, 2019, 47(16): 18
19 Wang C L, Li F, Yang K, et al. Materials research progress on carbon quantum dots-titanium dioxide composite photocatalysts [J]. Materials Review A, 2018, 32(10):3348
19 王春来, 李钒, 杨焜等. 碳量子点-二氧化钛复合光催化剂的研究进展 [J]. 材料导报, 2018, 32(10): 3348
20 Ke J, Li X, Zhao Q, et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance [J]. Journal of Colloid and Interface Science, 2017, 496: 425
21 Hao Dong, Jiang C M, Yang Z M, et al. The preparation of N-doped TiO2 and its photocatalytic property [J]. Chinese Journal of Materials Research, 2013, 27(3): 247
21 郝栋, 姜春梅, 杨振明等. N掺杂TiO2的制备和光催化性能 [J]. 材料研究学报, 20013, 27(3): 247
22 Li L, Chen Y, Jiao S, et al. Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles [J]. Materials & Design, 2016, 100: 235
23 Li D, Jia J, Zhang Y, et al. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant [J]. Journal of Hazardous Materials, 2016, 315: 1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.