Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 801-808    DOI: 10.11901/1005.3093.2019.094
  研究论文 本期目录 | 过刊浏览 |
NiCrFe焊缝金属的晶界形貌和晶界MC碳化物对局部变形行为的影响
周辉1,2,王培1,2(),陆善平1,2()
1. 中国科学院核用材料与安全评价重点实验室 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFe Weld Metal: Crystal Plasticity Finite Element Analysis
ZHOU Hui1,2,WANG Pei1,2(),LU Shanping1,2()
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

周辉,王培,陆善平. NiCrFe焊缝金属的晶界形貌和晶界MC碳化物对局部变形行为的影响[J]. 材料研究学报, 2019, 33(11): 801-808.
Hui ZHOU, Pei WANG, Shanping LU. Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFe Weld Metal: Crystal Plasticity Finite Element Analysis[J]. Chinese Journal of Materials Research, 2019, 33(11): 801-808.

全文: PDF(3586 KB)   HTML
摘要: 

采用晶体塑性有限元方法研究了NiCrFe焊缝金属中晶界形貌和晶界MC碳化物对局部变形行为的影响。结果表明,试样中的弯曲晶界促进其周围基体中滑移系的开动,进而促进塑性变形均匀分布。由于晶界碳化物MC与基体的临界分剪切应力和硬化行为的差异显著,碳化物承担较高的应力而发生较小的塑性变形。碳化物与基体界面处不连续的应力分布加剧了二者变形的不协调性,使裂纹在MC与基体界面处萌生。焊缝金属中的弯曲晶界和晶界碳化物MC,对高温失塑裂纹的作用相反。为了降低高温失塑的影响,在工程实践中应该在尽量减少MC的情况下得到弯曲晶界。

关键词 金属材料高温失塑裂纹晶体塑性晶界形态MC    
Abstract

Effect of grain boundary morphology and carbide precipitate on local heterogeneous plastic deformation of a NiCrFe weld metal were investigated by the crystal plasticity finite element method. Results show that the plastic deformation behavior is more homogeneous for the sample with tortuous grain boundaries rather than those with straight grain boundaries, since the tortuous grain boundary can promote the activation of slip systems around it more easily. Owning to the significant differences in the critical resolved shear stress and hardening behavior between the MC carbide and matrix, the carbide has much higher stress and lower strain compared with the matrix. The discontinuous stress distribution at the interface between the carbide and matrix may induce fracture initiation during the deformation. The tortuous grain boundaries and MC precipitates have the opposite effect on the ductility, dipping and cracking of the weld metal. Therefore, it should be tried to obtain the weld metal with tortuous grain boundaries while minimizing MC precipitates for engineering application.

Key wordsmetallic materials    ductility dipping cracking    crystal plasticity    grain boundary morphology    MC precipitate
收稿日期: 2019-02-02     
ZTFLH:  TG404  
基金资助:中科院重点部署项目(ZDRW-CN-2017-1);江苏省重点研发计划(BE2018113)
作者简介: 周 辉,男,1988年生,博士生
图1  NiCrFe焊缝金属650℃拉伸时的工程应力-应变曲线
Slip systemSlip planeSlip direction
γ1(111)[01ˉ1]
γ2(111)[101ˉ]
γ3(111)[1ˉ10]
γ4(1ˉ11)[101]
γ5(1ˉ11)[110]
γ6(1ˉ11)[01ˉ1]
γ7(11ˉ1)[011]
γ8(11ˉ1)[110]
γ9(11ˉ1)[101ˉ]
γ10(111ˉ)[011]
γ11(111ˉ)[101]
γ12(111ˉ)[1ˉ10]
表1  晶体塑性计算模型中的滑移系
ParameterSymbolMatrixMCUnit
Elastic moduliE143000650000MPa
Reference strain rateγ˙(α)0.0010.0011/s
Rate sensitivity parameterm20501
Initial slip resistanceτ053120MPa
Saturation slip resistanceτs225350MPa
Initial hardening modulush0160240MPa
Hardening ratioq111
表2  晶体塑性计算使用的NiCrFe焊缝金属和MC的材料参数
图2  晶界形态和不同类型的代表性单元模型
图3  工程应变为10%时平直晶界试样的变形行为
图4  工程应变为10%时弯曲晶界试样的变形行为
图5  试样特殊位置处滑移应变的演化
图6  工程应变为10%时晶界碳化物试样的变形行为
图7  晶界碳化物试样中特殊位置处滑移应变的演化
[1] Qin R, Wang H, He G. Investigation on the microstructure and ductility-dip cracking susceptibility of the butt weld welded with ENiCrFe-7 nickel-base alloy-covered electrodes [J]. Metal. Mater. Trans., 2014, 46 A: 1227
[2] Mo W, Lu S, Li D, et al. Effects of M23C6 on the high-temperature performance of Ni-based welding material NiCrFe-7 [J]. Metal. Mater. Trans., 2014, 45A: 5114
[3] Mo W, Lu S, Li D, et al. Effects of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 multi-pass weldments [J]. Mater. Sci. Eng., 2013, 582A: 326
[4] Kadoi K, Uegaki T, Shinozaki K, et al. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds [J]. Mater. Sci. Eng., 2016, 672A: 59
[5] Mo W, Hu X, Lu S, Li D, et al. Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal [J]. J. Mater. Sci. Technol., 2015, 31(12): 1258
[6] Zhang X, Li D Z, Li Y Y, et al. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals [J]. Acta Metall. Sin., (Engl. Let.) 2016, 29(10: 928
[7] Wei X, Xu M, Wang Q, et al. Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay [J]. Mater. Des., 2016, 110: 90
[8] Mo W L, Zhang X, Lu S P, et al. Effect of Nb content on microstructure, welding defects and mechanical properties of NiCrFe-7 weld metal [J]. Acta Metall. Sin., 2015, 51: 230
[8] (莫文林, 张 旭, 陆善平等. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响 [J]. 金属学报, 2015, 51: 230)
[9] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal Part I. Ductility and microstructural characterization [J]. Mater. Sci. Eng., 2004, 380A: 259
[10] Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1-Microcracking susceptibility in reheated weld metal [J]. Sci. Technol. Weld. Join., 2013, 11(4): 455
[11] Collins M G, Lippold J C. An investigation of ductility dip cracking in Nickel-based filler materials-Part I [J]. Weld. Res., 2003: 288
[12] Lee D J, Kim Y S, Shin Y T, et al. Contribution of precipitate on migrated grain boundaries to ductility-dip cracking in Alloy 625 weld joints [J]. Metal. Mater. Int., 2010, 16(5): 813
[13] Han K, Yoo J, Lee B, et al. Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel [J]. Mater. Sci. Eng., 2014, 618A: 295
[14] Jang A Y, Lee D J, Lee S H, et al. Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals [J]. Mater. Des., 2011, 32(1): 371
[15] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal Part II, Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, 380A: 245
[16] Chen J Q, Lu H, Cui W, et al. Effect of grain boundary behaviour on ductility dip cracking mechanism [J]. Mater. Sci. Tech., 2013, 30(10): 1189
[17] Collins M G, Ramirez A J, Lippold J C. An investigation of ductility dip cracking in nickel-based weld metals, Part III [J]. Weld Res., 2004, 83: 39
[18] Torres E A, Montoro F, Righetto R D, et al. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking [J]. J. Micro. 2014, 254(3): 157
[19] Qian D, Xue J, Zhang A, et al. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy [J]. Sci. Rep., 2017, 7(1): 2859
[20] Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
[21] Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids., 1972: 401
[22] Peirce D, Asaro R J, Needleman A. An analysis of noniniform and localized deforamtion in ductile single crystals [J]. Acta Metall., 1982, 30: 1087
[23] Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 1
[24] Bassani J L, Wu T. Latent hardening in single crystals II. Analytical characterization and predictions [J]. J. Mech.Phys. Solids., 1991, 14: 95
[25] Peirce D, Asaro R J, Needleman A. Materil rate dependence and localizaed deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
[26] Asaro R J. Crystal plasticity [J]. J. Appl. Mech., 1983, 50: 921
[27] Ye C, Chen J, Xu M, et al. Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction [J]. Mater. Sci. Eng. A, 2016, 662: 385
[28] Ramirez A J, Sowards J W, Lippold J C. Improving the ductility-dip cracking resistance of Ni-base alloys [J]. J. Mater. Process. Technol., 2006, 179(1-3): 212
[29] Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21(170): 399
[30] Di Gioacchino F, Clegg W J. Mapping deformation in small-scale testing [J]. Acta Mater., 2014, 78: 103
[31] Gao H, Huang Y. Geometrically necessary dislocation and size dependent plasticity [J]. Scr. Mater., 2003, 48: 113
[32] Hua C, Lu H, Yu C, et al. Reduction of ductility-dip cracking susceptibility by ultrasonic-assisted GTAW [J]. J. Mater. Process. Technol., 2017, 239: 240
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.