Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 641-649    DOI: 10.11901/1005.3093.2018.707
  研究论文 本期目录 | 过刊浏览 |
超高强度马氏体时效钢的力学行为与微观组织演化的关系
冯家伟1,2,牛梦超1,2,王威1(),单以银1,杨柯1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学 合肥 230026
Relationship Between Mechanical Behavior and Microstructure for an Ultra-high Strength Maraging Steel
FENG Jiawei1,2,NIU Mengchao1,2,WANG Wei1(),SHAN Yiyin1,YANG Ke1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
引用本文:

冯家伟,牛梦超,王威,单以银,杨柯. 超高强度马氏体时效钢的力学行为与微观组织演化的关系[J]. 材料研究学报, 2019, 33(9): 641-649.
Jiawei FENG, Mengchao NIU, Wei WANG, Yiyin SHAN, Ke YANG. Relationship Between Mechanical Behavior and Microstructure for an Ultra-high Strength Maraging Steel[J]. Chinese Journal of Materials Research, 2019, 33(9): 641-649.

全文: PDF(17102 KB)   HTML
摘要: 

用高分辨透射电镜(HRTEM)和原子探针层析技术(APT)等手段研究了2.4 GPa级超高强度马氏体时效钢在时效过程中析出相的演化规律及其与材料力学性能的关系。对组织观察的结果表明,马氏体时效钢在时效过程中析出相的演化规律分为三个阶段:时效初期富Ni和富Ti团簇的形成、峰时效期金属间化合物Ni3Ti及其界面处富Mo相的形成、过时效阶段Ni3Ti的粗化和富Mo相过渡为Ni3Mo。力学性能的实验结果表明,随着时效时间的延长抗拉强度呈现先提高后降低的趋势,时效时间为4 h时抗拉强度达到最大值2560 MPa。断裂韧性呈现与抗拉强度相反的变化趋势,时效时间为4 h时的断裂韧性值最低,仅为20 MPa·m1/2。根据不同时效阶段材料中析出相的演化规律,探讨了马氏体时效钢的力学行为与析出相的关系。

关键词 金属材料马氏体时效钢微观组织力学性能    
Abstract

Precipitate evolution during aging process as well as its effect on mechanical properties of a 2.4 GPa grade ultra-high strength maraging steel was investigated by means of high resolution transmission electron microscope (HRTEM) and atom probe tomography (APT). It was found that at the initial stage of aging Ni and Ti atoms segregated rapidly and Ni-Ti clusters formed in the matrix. At the peak-aging time the Ni-Ti clusters transformed into Ni3Ti, and the Mo-rich phase appeared at the Ni3Ti/matrix interface. With extension of the aging time Ni3Ti phase started to coarsen and the Mo-rich phase transformed into Ni3Mo. Mechanical property tests show that the ultimate tensile strength increased firstly and then started to decrease after peak-aging time. A mutually exclusive relation between the ultimate tensile strength and fracture toughness was found, especially, when the aging time was 4 h the ultimate tensile strength reached to the maximum value of 2560 MPa, however the fracture toughness decreased down to the minimum value of 20 MPa·m1/2. Finally, the effect of the morphology of the precipitates on both the strength and fracture toughness is discussed based on the results of the precipitates evolution during aging process.

Key wordsmatallic materials    maraging steel    microstructure    mechanical property
收稿日期: 2018-12-13     
ZTFLH:  TG142.41  
基金资助:国家自然科学基金(51201160);国家自然科学基金外国青年学者研究基金(51750110515);中国科学院创新促进会项目(2017233);中国科学院金属研究所创新基金重点项目(2015-ZD04)
作者简介: 冯家伟,男,1992年生,硕士生
ClusterNi-TiMo-rich
dmax0.400.45
Nmin2020
表1  最大分离法团簇参数的设定
图1  实验用马氏体时效钢深冷处理后的TEM明场像和[001]M衍射花样
图2  实验用马氏体时效钢经深冷处理后分析体(20 nm×20 nm×50 nm)中Ni、Ti、Co、Mo的原子分布以及对应的最近邻分析
图3  实验用马氏体时效钢在480℃时效10 min后分析体(30 nm×30 nm×60 nm)中Ni、Ti、Mo、Ni+Ti+Mo的原子分布和基于35%Ni+Ti和10%Mo的等浓度面
图4  实验用马氏体时效钢在480℃时效4 h后分析体(30 nm×30 nm×60 nm)中Ni、Ti、Mo、Ni+Ti+Mo的原子分布和基于35%Ni+Ti和10%Mo的等浓度面
图5  图4e中选区(6 nm×6 nm×18 nm)的溶质原子分布和一维浓度分布
图6  实验用马氏体时效钢在480℃时效48 h后分析体(30 nm×30 nm×60 nm)中的Ni、Ti、Mo、Ni+Ti+Mo 的原子分布以及基于35%Ni+Ti和10%Mo的等浓度面
图7  实验用马氏体时效钢在480℃时效96 h后Ni3Ti和Ni3Mo的高分辨图像及对应的傅里叶变换
图8  实验用马氏体时效钢在不同热处理状态下的拉伸性能和断裂韧度
图9  实验用马氏体时效钢在480℃时效不同时间后的XRD分析
图10  2.4 GPa级马氏体时效钢在480℃时效过程中析出相的演变规律示意图
1 BieberC.G. Progress with 25% nickel steel for high-strength application [J]. Metal Progress, 1960, 78(5): 763
2 HamakerJ C, BayerA M. Applications of maraging steels [J]. Cobalt, 1968, 3: 3
3 DeckerR F, GoldmanA J, EashJ T. Age-hardenable, martensitic iron-base alloys [P]. U.S. Pat, 3093519, 1963, 6
4 ShaW, GuoZ. Maraging steels: Modeling of microstructure, properties and applications [J]. Nephrology, 2009, 18(11): 724
5 DeckerR F, FloreenS. Maraging Steels: Recent Developments and Applications: Proceedings of a Symposium [M]. The Minerals, Metal & Materials Society, Huntington, 1988, 1: 38
6 TianJ L, WangW, YinL C, et al. Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel [J]. Scripta Mater., 2016, 121:37
7 LiY C, YanW, CottonJ D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Design., 2015, 82:56
8 JiangY, YinZ D, ZhuJ C, LiM W. Quantitative analysis on effect of alloying elements on Ms temperature of maraging stainless steel [J]. Special steel, 2003, 24(6): 9
8 姜 越, 尹钟大, 朱景川等. 合金元素对马氏体时效不锈钢Ms温度影响的定量分析 [J]. 特殊钢, 2003, 24(6): 9)
9 JiangY, YinZ D, ZhuJ C, et al. Development of ultra-high strength maraging steel [J]. Special steel, 2004, 25(2): 1
9 姜 越, 尹钟大, 朱景川等. 超高强度马氏体时效钢的发展 [J]. 特殊钢, 2004, 25(2): 1)
10 YangZ Y, LiuZ B, LiangJ X, et al. Development of maraging stainless steel [J]. Transactions of Materials and Heat Treatment, 2008, 29(4): 1
10 杨志勇, 刘振宝, 梁剑雄等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29 (4): 1)
11 YangW. Macroscopic Microscopic Fracture Mechanics [M]. National Defense Industry Press, 1995
11 杨 卫. 宏微观断裂力学 [M]. 国防工业出版社, 1995
12 AndersonT L. Fracture mechanics-Fundamentals and applications [M]. CRC Press, 2015
13 JiaoZ B, LiuJ C. Research and development of advanced nano-precipitate strengthened ultra-high strength steels [J]. Materials China, 2011, 30(12): 6
13 焦增宝, 刘锦川, 新型纳米强化超高强度钢的研究与进展 [J]. 中国材料进展, 2011, 30(12): 6
14 HeY, YangK, QuW S, et al. Strengthening and toughing of a 2800 MPa grade maraging steel [J]. Mater. Lett., 2002, 56: 763
15 MillerM K, KenikE A. Atom probe tomography: a technique for nanoscale characterization [J]. Microsc. Microanal., 2004, 10 (3): 336
16 OlofC. Hellman, John Blatz du Rivage, David N. Seidmanet al. Efficient sampling for three-dimensional atom probe microscopy data [J]. Ultramicroscopy, 2003, 95: 199
17 YoonK E, NoebeR D, HellmanO C, et al. Dependence of interfacial excess on the threshold value of the isoconcentration surface [J]. Surf. Interface. Anal., 2004, 36(5-6): 594
18 PingaD H, OhnumaaM, HirakawabY, et al. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel [J]. Mater. Sci. Eng., A, 2005, 394(1-2): 285
19 AnderssonM, StillerK, H?ttestrandM. Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels [J]. Surf. Interface. Anal., 2007, 39(2-3): 195
20 GeroldV, HaberkornH. On the critical resolved shear stress of solid solutions containing coherent precipitates [J]. physica status solidi (b), 1966, 16(2): 675
21 PerelomaE V, ShekhterA, MillerM K, et al. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening [J]. Acta materialia, 2004, 52(19): 5589
22 KrafftJ M. Correlation of plane strain crack toughness with strain hardening characteristics of a low, a medium, and a high strength steel [J]. Appl. Mater. Res, 1964, 3: 88
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.