Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 341-347    DOI: 10.11901/1005.3093.2017.107
  研究论文 本期目录 | 过刊浏览 |
退火温度对金属催化四面体非晶碳转变为石墨烯过程的影响
刘盼盼1,2, 李汉超2, 杨林1, 郭婷2, 柯培玲2, 汪爱英2()
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene
Panpan LIU1,2, Hanchao LI2, Lin YANG1, Ting GUO2, Peiling KE2, Aiying WANG2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

刘盼盼, 李汉超, 杨林, 郭婷, 柯培玲, 汪爱英. 退火温度对金属催化四面体非晶碳转变为石墨烯过程的影响[J]. 材料研究学报, 2018, 32(5): 341-347.
Panpan LIU, Hanchao LI, Lin YANG, Ting GUO, Peiling KE, Aiying WANG. Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene[J]. Chinese Journal of Materials Research, 2018, 32(5): 341-347.

全文: PDF(3023 KB)   HTML
摘要: 

设计了金属催化剂Ni/四面体非晶碳(ta-C)/基底三层结构,使用磁过滤阴极真空电弧设备制备了ta-C薄膜,用电子束蒸镀技术制备Ni薄膜,并对其进行快速热处理调控非晶碳转变石墨烯的过程,重点研究了热处理温度对石墨烯生长的影响。结果表明,沉积态的ta-C和Ni层均表面平整、均匀致密,其中Ni薄膜呈(111)晶面择优取向生长,为石墨烯的高质量生长提供了条件。同时,退火温度显著影响了非晶碳的石墨烯转变,当退火温度高于400℃时Ni表面能生成多层石墨烯,在500°C保温15 min可制备出质量较高的多层石墨烯。

关键词 无机非金属材料多层石墨烯快速热处理Ni催化四面体非晶碳    
Abstract

In order to investigate the transformation behavior of tetrahedral amorphous carbon (ta-C) into graphene, a three-layered structure material of metal catalyst Ni/ tetrahedral amorphous carbon (ta-C)/Si-substrate was prepared via a two-step process, namely ta-C film was firstly deposited on Si-substrate with a home-made filtered cathodic vacuum arc system, then on which (111) preferential oriented Ni-film was further deposited by electron beam evaporation method. Afterwards the as prepared three-layered structure material was treated via a controlled rapid thermal annealing method in order to transform (ta-C) into graphene. Meanwhile,the effect of annealing temperature on the graphene growth was focused. Results show that both the deposited films of ta-C and Ni all present smooth and uniform surface morphology, which provide the premise for growing high-quality graphene. Furthermore, the annealing temperature plays great role on the crystallization of amorphous carbon into graphene. When the annealing temperature was above 400°C, the multilayered graphene could form on Ni surface, and the better quality of graphene was obtained through annealing at 500°C for 15 min.

Key wordsinorganic non-metallic materials    multilayer graphene    rapid thermal annealing    Ni catalyze    tetrahedral amorphous carbon
收稿日期: 2017-01-24     
基金资助:资助项目 国家自然科学优秀青年基金(51522106),国家自然科学基金(51371187),国家重点基础研究发展计划(2013CB632302),浙江省公益项目(2016C31121)
作者简介:

作者简介 刘盼盼,女,1991年生,硕士

图1  非晶碳转变石墨烯生长过程的示意图
图2  沉积态ta-C薄膜的C1s的XPS拟合谱
图3  沉积态ta-C膜的拉曼光谱
图4  ta-C薄膜和沉积Ni薄膜后的AFM形貌图
图5  在不同温度退火样品的SEM表面形貌图
图6  在不同温度退火样品的XRD谱图(RT表示沉积态镀在ta-C上的Ni膜)
图7  在不同温度退火样品的拉曼光谱图和拟合后峰比值
图8  在500℃退火保温15 min的样品截面HRTEM,插图为石墨烯的层间距测量图
[1] Novoselov K S, Jiang D, Schedin F, et al.Two dimensional atomic crystals[J]. Proc. Natl. Acad. Sci. USA., 2005, 102(30): 10451
[2] Geim A K, Novoselov K S.The rise of graphene[J]. Nature Mater., 2007, 6:183
[3] Novoselov K S, Jiang D, Schedin T J, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[4] Bolotin K I, Sikes K J, Jiang Z, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun., 2008, 146(9): 351
[5] Zhang Y B, Tan Y W, Stormer H L, et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201
[6] Sasaki K, Jiang J, Saito R, et al.Theory of superconductivity of carbon nanotubes and graphene[J]. J. Phys. Soc. Jpn., 2007, 76(3): 033702
[7] Balandin A A, Ghosh S, Bao W Z, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett., 2008, 8(3): 902
[8] Lee C, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385
[9] Nair R R, Blake P, Grigorenko A N, et al.Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308
[10] Lin H L, Shen Y J, Wang Z J, et al.Preparation and Performance of Polypropylene Nanocomposites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer[J]. Chin. J. Mater. Res., 2016, 30(5): 393(蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究[J]. 材料研究学报, 2016, 30(5): 393)
[11] Heer W A D, Berger C, Wu X S, et al. Epitaxial graphene[J]. Solid State Commun., 2007, 143: 92
[12] Gao W, Alemany L B, Ci L J, et al.New insights into the structure and reduction of graphite oxide[J]. Nature Chem., 2009, 1(8): 403
[13] Wintterlin J, Bocquet M L.Graphene on metal surfaces[J]. Surf. Sci., 2009, 603(10): 1841
[14] Ren W C, Gao L B, Ma L P, et al.Preparation of graphene by chemical vapor deposition[J]. New Carbon Mater., 2011, 26(1): 71(任文才, 高力波, 马来鹏等. 石墨烯的化学气相沉积法制备[J]. 新型碳材料, 2011, 26(1): 71)
[15] Zhang W, Zhang S, Liu L Q, et al.Tribological properties and application of a-C diamond-like carbon films[J]. Journal of Academy of Armored Force Engineering, 2006, 20(4): 83(张伟, 张纾, 柳清亮等. 非晶碳类金刚石薄膜摩擦学特性及其应用[J]. 装甲兵工程学院学报, 2006, 20(4): 83)
[16] Dai W, Wu G S, Sun L L, et al.Effect of substrate bias on microstructure and properties of diamond-like carbon films by linear ion beam system[J]. Chin. J. Mater. Res., 2009, 23(6): 598(代伟, 吴国松, 孙丽丽等. 衬底负偏压对线性离子束DLC膜微结构和物性的影响[J]. 材料研究学报, 2009, 23(6): 598)
[17] Roy R K, Lee K R.Biomedical applications of diamond-like carbon coatings: a review[J]. J. Biomed. Mater. Res. B., 2007, 83: 72
[18] Dwivedi N, Kumar S, Malik H K, et al.Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films[J]. Appl. Surf. Sci., 2011, 257: 6804
[19] Rodr?guez-Manzo J A, Pham-Huu C, Banhart F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon[J]. ACS Nano. 2011, 5(2): 15292
[20] Banno K, Mizuno M, Fujita K, et al.Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films[J]. Appl. Phys. Lett., 2013, 103(8): 082112
[21] Zheng M W, Takei K, Hsia B, et al.Metal-catalyzed crystallization of amorphous carbon to graphene[J]. Appl. Phys. Lett., 2010, 96(6): 063110
[22] Xu S P, Li X W, Huang M D, et al.Stress reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films[J]. Appl. Phys. Lett., 2014, 104(14): 141908
[23] Bourgoin D, Turgeon S, Ross G G.Characterization of hydrogenated amorphous carbon films producedby plasma-enhanced chemical vapour deposition with various chemical hybridizations[J]. Thin Solid Films, 1999, 357: 246
[24] Gradowski M V, Ferrari A C, Ohr R, et al.Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices[J]. Surf. Coat. Technol., 2003, 174: 246
[25] Ferrari A C, Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B, 2000, 61(20): 14095
[26] Ferrari A C, Robertson J.Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Phys. Rev. B, 2001, 64(7): 075414
[27] Song X L, Song L X, Zhang T.Effect of nickel film on growth of graphene by chemical vapor method[J]. J. Chin. Ceram. Soc., 2015, 43(12): 1795(宋香莲, 宋力昕, 张涛. 镍薄膜对化学气相沉积法生长石墨烯的影响[J]. 硅酸盐学报, 2015, 43(12): 1795)
[28] Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53(3): 1126
[29] Ferrari A C, Meyer J C, Scardaci V, et al.Raman Spectrum of Graphene and Graphene Layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401
[30] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al.Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
[31] Can?ado L G, Takai K, Enoki T.General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Appl. Phys. Lett., 2006, 88(16): 163106
[32] Li X S, Cai W W, An J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312
[33] Wenisch R, Hübner R, Munnik F, et al.Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition[J]. Carbon, 2016, 100: 656
[34] Giovannetti G, Khomyakov P A, Brocks G, et al.Doping graphene with metal contacts[J]. Phys. Rev. Lett., 2008, 101(2): 026803
[35] Saadi S, Abild-Pedersen F, Helveg S, et al.On the role of metal step-edges in graphene growth[J]. J. Phys. Chem. C, 2010, 114(25): 11221
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.