Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 127-135    DOI: 10.11901/1005.3093.2016.641
  研究论文 本期目录 | 过刊浏览 |
基于联合仿真方法研究静电纺丝轨迹
刘正华1, 王兢1(), 杜海英1,2, 王惠生1, 李晓干1, 王小风3
1 大连理工大学 电子信息与电气工程学部 大连 116023
2 大连民族学院 机电信息工程学院 大连 116605
3 大连理工大学 盘锦校区基础教学部 盘锦 124000
Joint Simulation of Electrospinning Trajectory
Zhenghua LIU1, Jing WANG1(), Haiying DU1,2, Huisheng WANG1, Xiaogan LI1, Xiaofeng WANG3
1 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116023, China
2 College of Electromechanical & Information Engineering, Dalian Nationalities University, Dalian 116605, China;
3 School of Mathematical and Physical Sciences, Dalian University of Technology, Panjin 124000, China
引用本文:

刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
Zhenghua LIU, Jing WANG, Haiying DU, Huisheng WANG, Xiaogan LI, Xiaofeng WANG. Joint Simulation of Electrospinning Trajectory[J]. Chinese Journal of Materials Research, 2018, 32(2): 127-135.

全文: PDF(6640 KB)   HTML
摘要: 

提出一种联合仿真方法,先使用COMSOL Multiphysics软件仿真目标装置的电场分布,计算出各种条件下的电场分布;然后在基于Matlab的轨迹仿真中使用上述电场仿真结果代替描述电场的方程。这种Matlab与COMSOL Multiphysics联合仿真不仅提高了轨迹仿真的准确度,还可以应用在各种复杂的电场条件下。本文应用联合仿真方法对基本的静电纺丝、添加了环形和平行辅助极板的静电纺丝轨迹进行了联合仿真和实验验证。在此基础上,采用联合仿真方法对双喷头双极性静电纺丝轨迹进行了仿真和实验验证。结果表明,联合仿真结果与实验结果吻合得很好。

关键词 材料合成与加工工艺静电纺丝轨迹联合仿真MatlabCOMSOL Multiphysics    
Abstract

Electrospinning is a widely used technique to synthesis nanofiber materials. In order to further study the electrospinning process, software simulation method was introduced in many reports. There are two kinds of software, and each of them has its advantage: Software Matlab is good in mathematical computing, and COMSOL Multiphysics can perfom accurate calculation for complicated electric fields. However, the relevant discription for electric fields in Matlab simulation was inacurate. A new method of joint simulation combining Matlab and COMSOL softwares together was used in this report: In the Matlab simulation process, the electric field equation was replaced by COMSOL calculation results. Compared with the Matlab simulation results, the joint simulation results are much close to actual conditions. This method also overcame the inconvenience (incapability) of electric field description in Matlab simulation and provided a solution to simulate fiber trajectories in complicated electric fields, such as parallel or circular auxiliary electrodes, respectively. The joint simulations were carried out for the electrospinning with one and two nozzles respectively. The electrospinning experiments prove that the joint simulation can predict fairly well the experiment results.

Key wordsmaterial synthesis and processing technology    electrospinning trajectory    joint simulation    Matlab    COMSOL multiphysics
收稿日期: 2016-11-02     
ZTFLH:  TN305  
基金资助:国家自然科学基金(61574025, 61501081, 61474012, 51602035)
作者简介:

作者简介 刘正华,男,1990年生,硕士生

图1  静电纺丝装置示意图(a)和基于Matlab的仿真轨迹图(b)
图2  单针头静电纺丝装置: 网格示意图(a)和yz平面电场分布图(b)
图3  仿真轨迹的局部放大图:(a) Matlab仿真,(b) 联合仿真
图4  Reneker等拍摄的静电纺丝轨迹照片[14]
图5  添加环形辅助电极时:(a) 静电纺丝装置示意图,(b) yz截面电场分布图
图6  添加环形辅助电极后的联合仿真结果:(a) 添加环形辅助电极后,(b) 未添加辅助电极
图7  添加环形辅助电极后的联合仿真结果俯视图:(a) 添加环形辅助电极后,(b) 未添加辅助电极
图8  添加了平行辅助电极时:(a) 静电纺丝装置示意图,(b) xz截面电场分布图,(c) yz截面电场分布图
图9  具有平行辅助电极时联合仿真纤维轨迹: (a)主视图, (b)左视图, (c)俯视图
图10  添加了平行辅助电极的静电纺丝:(a)实验装置图,(b)添加平行辅助电极后沉积图,(c)未添加辅助电极时的沉积图
图11  制备的SnO2(a)、In2O3(b)和SnO2/In2O3(c)纳米纤维的SEM图像
图12  双喷头双极性静电纺丝装置数学模型示意图
图13  双喷头双极性静电纺丝:(a) 电极及收集板位置示意图,(b) yz截面电场分布图
图14  双喷头双极性静电纺丝联合仿真的纤维轨迹图:(a)三维图,(b)俯视图
图15  双喷头双极性静电纺丝实验装置及两种纤维的沉积照片
[1] Lu X, Zhao Y, Wang C, et al.Fabrication of CdS nanorods in PVP fiber matrices by electrospinning[J]. Macromolecular Rapid Communications, 2005, 26(16): 1325
[2] Zhang Y, Yang J, Li Q, et al.Preparation of Ga2O3 nanoribbons and tubes by electrospinning[J]. J. Cryst. Growth, 2007, 308(1): 180
[3] Yang A, Tao X, Hung P G K, et al. Preparation of porous tin oxide nanobelts using the electrospinning technique[J]. J. Am. Ceram. Soc., 2008, 91(1): 257
[4] Xu L, Dong B, Wang Y, et al.Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires[J]. Sens. Actuators B, 2010, 147(2): 531
[5] Theron A, Zussman E, Yarin A.Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001, 12(3): 384
[6] Li D, Wang Y, Xia Y.Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters, 2003, 3(8): 1167
[7] Li D, Wang Y, Xia Y.Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Adv. Mater., 2004, 16(4): 361
[8] Katta P, Alessandro M, Ramsier R D, et al.Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector[J]. Nano Letters, 2004, 4(11): 2215
[9] Kim G, Cho Y S, Kim W D.Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J]. Eur. Polym. J., 2006, 42(9): 2031
[10] Theron A, Yarin A L, Zussman E, et al.Multiple jets in electrospinning: experiment and modeling[J]. Polymer, 2005, 46(9): 2889
[11] Varesano A, Carletto R A. Mazzuchetti G, Experimental investigations on the multi-jet electrospinning process[J]. J. Mater. Proce. Technol., 2009, 209(11): 5178
[12] Yang Y.Multiple jets in electrospinning in properties and applications of dielectric materials [A], IEEE 8th International Conference on Properties and Applications of Dieelectric Materials[C]. Bali, Indonesia, 2006
[13] Du H Y, Wang J, Wang J.Modeling and simulation study of motion locus in electrospinning[J]. Mater. Sci. Techonl., 2012, 20(6): 56(杜海英, 王兢, 王娟, 静电纺丝运动轨迹的建模与仿真研究[J]. 材料科学与工艺, 2012, 20(6): 56
[14] Reneker D H, Yarin A L, Hao F, et al.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. J. Appl. Phy., 2000, 87(9): 4531
[15] Spivak A, Dzenis Y, Reneker D.A model of steady state jet in the electrospinning process[J]. Mechanics Research Communications, 2000, 27(1): 7
[16] Thompson C, Chase G G, Yarin A.Effects of parameters on nanofiber diameter determined from electrospinning model[J]. Polymer, 2007, 48(23): 6913
[17] Moses H, Gregory R, Michael P.Electrospinning and electrically forced jets. II. Applications[J]. Physics of Fluids, 2001, 13(8): 2221
[18] Shin Y, Hohman M, Brenner M, et al.Electrospinning: A whipping fluid jet generates submicron polymer fibers[J]. Appl. Phys. Lett., 2001, 78(8): 1149
[19] Karatay O, Dogan M.Modelling of electrospinning process at various electric fields[J]. Micro & Nano Letters, 2011, 6(10): 858
[20] Badieyan S S, Janmaleki M.Nanofiber formation in the presence of an external magnetic field in electrospinning[J]. J. Polym. Eng., 2015, 35(6): 587
[21] Ye X Y, Jin Y N, Huang X J, et al.Simulation of electrical field for the formation mechanism of Bird's Nest patterned structures by electrospinning[J]. Chinese J. Polym. Sci., 2013, 31(3): 514
[22] Cui X, Li L, Xu F.Controlled assembly of poly (vinyl pyrrolidone) fibers through an electric-field-assisted electrospinning method[J]. Appl. Phys. A, 2011, 103(1): 167
[23] Du H Y, Wang J, Su M Y, et al.Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process[J]. Sens. Actuators B, 2012, 166: 746
[24] Su M Y, Wang J, Du H Y, et al.Characterization and humidity sensitivity of electrospun ZrO2:TiO2 hetero-nanofibers with double jets[J]. Sens. Actuators B, 2012, 161(1): 1038
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 安欢,伍建春,张仲,王欢,孙华,展长勇,邹宇. 电化学刻蚀参数对高阻厚壁宏孔硅阵列表面形貌的影响[J]. 材料研究学报, 2019, 33(3): 177-184.
[11] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.