Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 881-886    DOI: 10.11901/1005.3093.2017.106
  研究论文 本期目录 | 过刊浏览 |
新型多孔碳材料的制备和性能
焦圆1,2, 孙丽丽1,2, 郭鹏1, 汪爱英1()
1 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用 技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2 中国科学院大学 北京 100049
Preparation and Property of a Hierarchical Porous Carbon Material
Yuan JIAO1,2, Lili SUN1,2, Peng GUO1, Aiying WANG1()
1 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

焦圆, 孙丽丽, 郭鹏, 汪爱英. 新型多孔碳材料的制备和性能[J]. 材料研究学报, 2017, 31(12): 881-886.
Yuan JIAO, Lili SUN, Peng GUO, Aiying WANG. Preparation and Property of a Hierarchical Porous Carbon Material[J]. Chinese Journal of Materials Research, 2017, 31(12): 881-886.

全文: PDF(3410 KB)   HTML
摘要: 

以聚对苯二甲酸乙二酯(Polyethylene terephthalate, PET)无纺布和嵌段聚合物Pluronic F127作为模板,以酚醛树脂作为碳前驱体,用双模板法制备了具有大孔和介孔双重复合结构的碳材料。结果表明,PET的分解产生了尺寸为10~15 μm的大孔,而F127的分解产生了尺寸为4~6 nm的介孔。调节碳化过程的反应条件,可使多孔碳材料的电阻率由1.63×104 Ωm降低至3.13×10-3 Ωm。不使用导电添加剂或黏合剂,用该多孔碳材料作为电极材料的锂离子电池,其容量十分稳定。

关键词 无机非金属材料双模板法多孔碳材料锂离子电池    
Abstract

Porous carbon materials were fabricated by a dual-templating method, using non-woven polyethylene terephthalate (PET) fabrics as the hard template and Pluronic F127 as the soft template, with soluble phenolic resol as the carbon precursor. There exists meso pores of 4~6 nm resulted from decomposition of F127 and macro pores of 10~15 μm resulted from decomposition of PET fabric in the prepared hierarchical porous materials. The conductivity can be reduced from 1.63×104 Ωm to 3.13×10-3 Ωm by properly adjusting the carbonization process parameter. This porous carbon sheet can be directly used as an electrode for Li-ion battery without any conductive additive or binder, and has very stable capacity.

Key wordsinorganic non-metallic materials    dual-templating    porous carbon material    Li-ion battery
收稿日期: 2017-01-24     
ZTFLH:  TB321  
基金资助:国家自然科学基金(51522106),浙江省科技重点研发计划(2017C01001)
作者简介:

作者简介 焦 圆,女,1990年生,博士生

Samples m(F127)/g m(resol)/g Carbonization temperature/℃ Carbonization duration/min
#1 0.5 1 900 60
#2 1 1 900 60
#3 2 1 900 60
#4 0.5 1 600 1
#5 0.5 1 600 60
表1  不同多孔碳材料制备参数表
图1  未处理的PET无纺布SEM及光学照片(内嵌图)、多孔碳材料SEM和TEM图以及局部分布图
图2  碳化过程不同的多孔碳材料的电阻率
图3  碳化过程不同的多孔碳的拉曼图谱、G峰位移和ID/IG变化
图4  速率为0.1C前五个充放电周期的电容-电压曲线和300次充放电周期的循环次数-电容曲线。
[1] Ji X, Nazar LF.Advances in Li-S batteries[J]. J. Mater. Chem., 2010, 20(44): 9821
[2] Xu G, Ding B, Shen L, et al.Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery[J]. J. Mater. Chem. A., 2013, 1(14): 4490
[3] Jayaprakash N, Shen J, Moganty SS, et al.Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem., Int. Ed. Engl., 2011, 50(26): 5904
[4] Wenzel S, Hara T, Janek J, et al.Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ. Sci., 2011, 4(9): 3342
[5] Xu Y, Zhu Y, Liu Y, et al.Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries[J]. Adv. Energy Mater., 2013, 3(1): 128
[6] Magasinski A, Dixon P, Hertzberg B, et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nat. Mater., 2010, 9(4): 353
[7] Chai G S, Shin I S, Yu J S.Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells[J]. Adv. Mater., 2004, 16(22): 2057
[8] Deng Y, Liu C, Yu T, et al.Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chem. Mater., 2007, 19(13): 3271
[9] Su F, Lv L, Zhao X.Synthesis of nanostructured porous carbon[J]. Int. J. Nanosci., 2005, 4(02): 261
[10] Huang Y, Cai H, Feng D, et al.One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem. Commun., 2008(23): 2641
[11] Xue C, Tu B, Zhao D.Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams[J]. Adv. Funct. Mater., 2008, 18(24): 3914
[12] Meng Y, Gu D, Zhang F, et al.A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem. Mater., 2006, 18(18): 4447
[13] Shimizu T.Self-assembled Nanomaterials II: Nanotubes[M]. Berlin: Springer Berlin Heidelberg, 2008
[14] Werner J G, Johnson S S, Vijay V, et al.Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries[J]. Chem. Mater., 2015, 27(9): 3349
[15] Matsumura Y, Wang S, Mondori J.Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries[J]. J. Electrochem. Soc., 1995, 142(9): 2914
[16] Nan D.One dimensional porous carbon and Si/C anode materials for lithium ion batteries[D]. Beijing: Tsinghua University, 2014(楠顶. 锂离子电池自支撑一维多孔碳与硅碳复合负极材料研究[D]. 北京: 清华大学, 2014)
[17] Xing W, Dahn J R.Study of irreversible capacities for Li insertion in hard and graphitic carbons[J]. J. Electrochem. Soc., 1997, 144(4): 1195
[18] Tarascon J M, Armand M.Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359
[19] Chung S Y, Bloking J T, Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat. Mater., 2002, 1(2): 123
[20] Kinney C R.Studies on producing graphitizable carbons[A]. Proceedings of first and Second Conferences on Carbon[C]. New York, 1995
[21] Marchand A.,J. V. Zanchetta. Proprietes electroniques d'un carbone dope a l'azote[J]. Carbon, 1966, 3(4): 483
[22] Kim, Jung Dam, Jae-Seung Roh, Myung-Soo Kim. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. carbon lett., 2017, 21: 51
[23] Kwon, Jin Heon, et al.Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites[J]. Composites Part B, 2013, 46: 102
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.